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A simple model of nonlinear optical systems exhibiting instability--such as in 
laser action and in bistable absorption--is presented that provides a prototype 
of nonequilibrium thermodynamics on a statistical basis. The adiabatic reduction 
of the atomic degrees of freedom in a revised Langevin treatment establishes a 
fully consistent framework in which the active electromagnetic field mode is in 
contact with two thermal reservoirs (the cavity and the atoms) as well as being 
acted Upon by an external field. The results are summarized by the first and 
second laws, dE = ~ W  + ~Qc + 6QA and dS >~ 6Qc/T ~ + 6QA/TA, with the statis- 
tical mechanical representations of the entities therein exhibiting the nature of the 
mode;  i.e., (a) a heat-engine structure operating between two reservoirs of 
temperatures T,. > 0 and TA < 0 for the laser, and (b) a nonlinear response 
against external work balanced by a single reservoir (T c = TA) for the absorptive 
bistability. 

KEY WORDS: kebowitz model of many-reservoir open systems; stochastic 
calculus; detailed balance; heat engine; nonlinear Onsager coefficient. 

1. I N T R O D U C T I O N  

In  a p rev ious  pape r  ~1) (hereaf ter  referred to as I), we discussed h o w  a statis-  
tical t h e o r y  o f  d iss ipa t ive  d y n a m i c s  c an  be co n v e r t ed  in to  its t h e r m o d y n a m i c  

desc r ip t ion ,  c o n s i d e r i n g  in pa r t i cu l a r  a laser  system. This  sys tem is p r e s u m -  
ab ly  the s imples t  poss ib le  example  o f  the ins t ab i l i ty  o f  d y n a m i c s  wi th  on ly  
a few degrees  o f  f reedom,  a n d  has  been  the subject  o f  m a n y  s tudies  (it is 
in fact the  first ex a mp l e  a n d  p r o t o t y p e  o f  H a k e n ' s  synergetics(2'3)). To  ou r  

1 Originally presented at the Taniguchi Symposium, October 1979. (441 
2 Department of Physics, Kyoto University, Kyoto, Japan. 
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knowledge, 3 however, a full thermodynamic formulation is not available for 
the macroscopic, steadily streaming aspect of the phenomenon on the basis of 
microscopic laser theory. The present paper extends I to complete such a 
formulation: We obtain and discuss thermodynamic relations in situations 
far from thermal equilibrium involving phase transitions; we include the 
first-order phase transition induced by an external, coherent field--the 
so-called optical bistability of recent investigations(l~ well as the 
second-order phase transition induced by the usual pumping, i.e, lasing. 

Our approach is not especially novel; the method of Langevin equations 
was used in the very beginning of laser theory, but is now revised sub- 
stantially and incorporated into the study of stochastic differential equations 
(see I). Here, one starts with a set of macroscopic rate equations relevant to 
the phenomenon and supplements them by stochastic force terms of Gaussian 
white noise character. It is then possible, in principle, to find the distribution 
of the system, in particular for the steady state, which provides all the 
necessary information about the thermodynamics. Investigations of the 
steady-state distributions for stochastic systems including the solutions of 
Fokker-Planck equations in the above Langevin approach are quite popular 
in various branches of statistical physics. 

After submitting paper I, we became acquainted with the work of 
Landauer. He started with a study of fluctuations in bistable tunnel diode 
circuits, ~12) and has since published a number of papers ~13-16~ treating 
various nonlinear systems similar to the laser in an attempt to establish the 
connection between the steady-state distribution of such a system and its 
thermodynamic characteristics; in his terminology, (t6) '~dQ = T dS far from 
equilibrium." The present discussion is in agreement with the motivation and 
starting point of his approach, but we present a more useful form of the 
thermodynamic relations than his "dQ = T dS";  we develop our results step 
by step in subsequent sections. To focus on the point of difference, we cite 
a paper by Landauer and Woo ~3) presented in 1972, and especially the 
discussion of it, where two important questions were asked, one by Fisher, 
who questioned the formula ~ p log p dq for the entropy, on the basis of 
which the authors discussed the quantity T dS, and the other by Van Kampen, 
who expressed a doubt, which would be rather serious for the entire Langevin 
approach in the nonlinear regime, concerning the use of the so-called 
"nonlinear Fokker-Planck equations." 

Van Kampen's objection has been given in a concrete statement in his 
systematic expansion scheme of the master equations, ~7'1s) and the present 

a The thermodynamics  of the laser must  be the prototype of thermodynamics  involving negative 
absolute temperatures, where a revision of the second law is inevitable (4-v) (see the formulation 
by Nakagomi(S)). Such work, however, does not  refer to s tandard laser theory. ~ Our main 
concern is to fill this gap. 
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approach must be subject to his criticism. A discussion of our standpoint 
of being based on the nonlinear Langevin equations will be postponed to 
the last section. Here, we note that there is nothing wrong or inconsistent 
in the present framework, at least for obtaining the steady-state distributions, 
which we attribute to the effectiveness of the stochastic calculus in con- 
junction with a consideration of detailed balance: it clarifies some confusing 
points with regard to nonconstant diffusion coefficients. 

As to the problem of the relevant introduction of entropy, we point out 
that there exists a satisfactory theoretical framework due to Lebowitz, ~19-22) 
which we call the Lebowitz model of  many-reservoir open systems: by means 
of this model, the concept of entropy production (rather than entropy itself) 
can be introduced such that the thermodynamic and information-theoretic 
contributions to it are compatible with each other and also with the second 
law of  thermodynamics. We expect (and in fact verify, though not claiming 
generality) that a class of nonlinear systems of interest, including the laser 
and those considered by Landauer, can be adapted to the Lebowitz model. 
Recently, Spohn and Lebowitz (231 gave a revised version of the model, 
proposing a formulation of  the principle of minimal entropy production. 
We supplement this formulation by incorporating Prigogine's idea of the 
"local potential," including the presence of  external fields, so that it can be 
used to characterize the steady state beyond the linear regime of irreversible 
processes. (24) On this basis, we discuss some thermodynamic aspects of our 
laser system. 

The general thermodynamic relation we deduce is nothing more than the 
familiar form dS >~ Yi (1/Ti) ~Qi, but we show that the Lebowitz formulation 
provides an accurate expression for each entity in this formula and that all 
the characteristics of the situation far from equilibrium are fully contained 
in expressions averaged over the distribution. For the steady lasing state, 
the formula exhibits an ideal heat engine operating between two thermal 
reservoirs, one characterized by a negative and the other by a positive 
temperature. For  the state of absorptive bistability, it is related to a typical 
nonlinear Onsager coefficient of the irreversibility relation, by which the con- 
ventional expression of the "entropy product ion" can be based upon the 
ensemble-averaged version, where the real meaning of entropy production 
can be seen. 

2. D ISSIPATIVE D Y N A M I C S  OF A SYSTEM DRIVEN BY 
M E C H A N I C A L  A N D  T H E R M A L  C O N S T R A I N T S  

The Brownian motion of a particle in one dimension affected by a 
potential field and a friction due to the environment-- the well-known 
Ornstein-Uhlenbeck process ~2s) in a general potential field--will be discussed 
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in this section for the purpose of illustrating the Lebowitz model. If x 
and u denote the position and the velocity, respectively, of such a Brownian 
particle of mass m, then the set of Langevin equations governing the motion 
is given by 

dx 
- - = u  (1) 
dt 

du 1 aq~ 
- -  = - 7 u  - - -  - -  + s  ( 2 )  
dt m a x  

In the latter equation qb(x) represents the potential function, 7 the friction 
constant, andJ~(t) the residual fluctuating force, which is assumed to satisfy 

< s  = 0. <L(O)L(t)) = 2D, 6(0 (3) 

(i.e., the assumption of stationary Gaussian white noise), as usual. Then, it is 
known that the constant D, of the strength of the fluctuation is related to the 
equilibrium value of the kinetic energy of the particle : 

D,, = 7(U2)eq = 7kT/m (4) 

namely, the fluctuation dissipation theorem, or, more specifically, the Ein- 
stein relation) 2s 27) 

The probability distribution p(t; u, x) and its steady-state form Pst(U, X) 
[which is attained by taking t---, oo of p(t; u, x)], over which the time- 
correlation function of the form (XX( t ) )  is calculated, satisfies the Fokker- 
Planck equation (specifically, the Kramers equation (2v)) 

ap a a f l  agb "~ a 7kTO2p 
a t  = ax ( - up) + ~ k ~x p + ~ a-u (up) + - -  - -  (5) m au 2 

In particular, 

a a / 1 ar a 
0 = ~x ( - upst) + ~ ~-~ ~x Pst)+ Y ~u (up,t) -~ m au 2 (6) 

Let the potential function ~b(x) be lower bounded and satisfy 

qS(x) -~ + oo for x -* _+ oo (7) 

so that the particle is fully bounded in it. Then, the canonical distribution 
of the particle in thermal equilibrium 
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formally satisfies Eq. (6) because 

- U ~ x  -F m Wo x p,q = O , 7 U + m--  ~u f peq = O (8) 

which in general yields a unique steady-state solution of Eq. (6): The property 
(7) guarantees that the function e -(1/kr)4"(x) is normalizable in the entire x 
axis, so that over the equilibrium distribution 

Z(~b) = exp[ - 4 ( x ) / k r ]  dx 
-oo 

the average values (u)eq and ( 3 ~ / 8 x ) ~  n vanish, and together with (J~( t ) )  = 

0 for all t, the steadiness conditions 

d d 
d7 <X)eq = 0, ~ (/'/)eq ~-" 0 (10) 

are satisfied. 
The physical picture behind the above argument is clearly that the 

Brownian particle, being in contact with a thermal reservoir of a definite 
temperature T, i.e., affected constantly by the fluctuation force from the 
reservoir, tends to its equilibrium position determined by the average over 
the distribution Peq. The stationary, Gaussian white noise characteristic (3) 
together with the Einstein relation (4) bridge the kinetics and the thermo- 
dynamics, ensuring the overall consistency of the argument. We consider 
two possible modifications of the standard argument of this kind; first, to 
remove the assumption that the particle is completely bounded in the 
potential ~b as indicated in (7), and second, to generalize the thermal 
reservoir with which the particle is in contact such that it is not restricted 
to a single reservoir of a definite temperature, but involves more than two of 
them, each satisfying (3) and (4), but having different 7's and T's. 

2.1. First Modi f ica t ion  

Let us consider the simplest case, viz. 8(a/Sx = const, - oo < x < oo. 
This corresponds to free Brownian motion under the action of a uni- 
form external field F = - S c ~ / S x ,  for which the formal solution 
exp[- (1 /kT)(mu2/2  - Fx)]  is obviously irrelevant to the equilibrium. There 
exists a relevant distribution that satisfies the Kramers equation (6) in this 
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case: 

for which 

p ~ t ( u , x ) = ( 2 n ~ k m ~ T ) l " 2 e x p I - ~ k T ( U - 2 )  2] 

uc~x-x = ~  Uu - +?.u - - m  P s ' = ~  

(11) 

d F 
d5 (X)s, = (u),: m7 # o (12) 

The steady-state distribution Pst, (1 1), differs from the equilibrium one Peq, 
(9), with ~b = 0, due to the presence of the external field F, which can be 
considered as a mechanical constraint driving the system from thermal 
equilibrium. Let us suppose that our system consists of N such particles in a 
unit volume, each carrying a charge e, and regard the field F as an electric 
field: F = eE. Then Eq. (12) just represents Ohm's  law, 

J = Neff@st = aE, c~ = NeZ/m7 (13) 

and elementary irreversible thermodynamics (28) tells us that it is associated 
with a nonvanishing entropy production given by 

1 1 
- - J . E  = - - o E  2 > 0 (14) 
T T 

It will be shown that an information-theoretic construction of entropy pro- 
duction in the spirit of  the Lebowitz model agrees with this result. Also, there 
exists a class of more general potentials such that 84/Ox ~ const and yet 
the particle is not fully bounded. Landauer 's  example of  a tunnel diode circuit 
belongs to this category, and the steady-state distribution in such a case 
requires more elaborate treatment (to be given in a separate publication). 

2.2. Second M o d i f i c a t i o n  

In Eq. (2), we assume that 

? = '~1 + ])2, ju(t)  =jc'~l)(t) -]- f}?)( / )  (15) 

and in place of (3) and (4) we have 

(f~)(t)) = O, (f~il(O)fl/)(t)) = 2D~ i) 3i~ ;5(1) (16) 

D~ i) = 7ikTjm, i,j = 1, 2 (17) 

These imply that the Brownian particle is affected by the fluctuation forces 
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of two independent thermal reservoirs of temperature T~ and T 2. The 
associated Fokker-Planck equation (5) is now replaced by 

@ 0 0 (1 ~?~b ) 

at - & ( - u p )  + 

0 kTxT1 + ky2T2 02p 
+ ~u [(71 + 72)up] + m ~u 2 (18) 

Suppose that the potential q5 satisfies the binding condition (7). Then it is easy 
to check that the steady-state solution of (18) is of the form (9) [for which 
the separate satisfying of Peq in the form (8) holds] but now having a 
temperature T given by 

T =  (71Tt + 72172)/(71 + 72) (19) 

Thus, the Brownian particle under consideration obeys a steady-state dis- 
tribution which is still of thermal equilibrium type but is identical to neither of 
the two equilibria corresponding to the temperatures T, and T2 (unless 
T 1 = T2). This provides the most elementary example of a Lebowitz-type 
two-reservoir open system, considered as driven by an external constraint 
which is not mechanical but thermal: the thermal driving here is evidenced 
by a heat flow produced from the higher temperature reservoir to the lower 
temperature one, given by 

J h -  7t72 X k ( T  2 _ T1 ) (20) 

for the N-particle system. The Lebowitz formulation (see Section 6) then 
predicts that this is associated with entropy production as follows: 

h kT, k ~/~ + 72 T~T2 (r2 - T1)2 > 0 (21) 

The above two examples demonstrate how a nonequilibrium steady state 
is formed by an external constraint and how its nonequilibrium characteristics 
can be indicated by entropy production. Although they are in the context of 
linear irreversible processes, the considerations can be extended to more 
complex nonlinear systems involving instability and a phase change: This 
is the state of affairs in a laser system. 

3. M A C R O S C O P I C  DESCRIPTION OF A 
S IMPLE NONLINEAR OPTICAL SYSTEM 

The Langevin treatment of the laser rate equation is a substantial chapter 
in standard laser theory, and here we cite a specific form of the equation of 
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motion for an active mode of the em field from Sargent eta[. C91 (Chapter 20) : 

dt d A ( t ) = - [  v ~  ] 1-92~(co - v)+"7 "" " l  + ~/R.~ + i(f~-- v) A(t) + [ JAU) + G(t) (22) 

If the quantity G(t) is omitted in this equation, it becomes a deterministic 
rate equation for the amplitude A(t) of the mode, and the inclusion of the 
noise G(t) makes the process A(t) stochastic. It is derived by eliminating 
variables of the atomic degrees of freedom (the complex atomic dipole 
collective mode and the population difference of two atomic levels besides 
A and A*) from the starting set of Langevin equations for six random 
variables. To be self-contained, we outline the derivation within our context 
in the Appendix, leaving a further account of Eq. (22) to Table I. We 
obtain the equation for a(t) [=A(t)]  in the form 

da [~c + i(co v)](a a) + �89 d(v) Zo 
- - - a + (noise) (23) 

dt 1 + s(v)a*a 

in terms of three frequencies (co, coo, v), three damping constants (K, 7~, ~1), 
and the saturation factor s [and s(v)] related to the field-atom coupling 
parameter g through (N = total number of atoms) 

S = 492/7117• = O ( N -  t) (24) 

s(v) = s d*(v) d(v), d(v) = 7._/[7• + i(v - coo)] (24') 

Table I. Auxiliary Parameters 

Notation" 

This work Ref. 9 Meaning 

(D O O9 

V 

7z 7 
Yil (Y. + 7b)/2 
Zo �89 

Frequency of the active mode 
Frequency of  the atomic dipole = (1/h)(E, - Eb) 
Frequency of the rotating frame 

= (xc~ + 7zc~ • + 7• -~ co for lasing (K << 7• 
= frequency of  the external field 

Cavity loss 
Relaxation rate for the dipole 
Relaxation rate for the population difference 
Pump parameter [=2~(Na - Nb) without saturation] 

< 0 for ordinary, > 0 for inverted population 
Amplitude of  coherent external field 

",2. and Yb denote the relaxation rate of  the a (upper) and b (lower) level popula- 
tions, respectively, of  the two active levels in Ref. 9. Because of the difference 
in the models, however, a different identification 7q4 = 2GTb/(G + 7b) in the 
saturation denominator  in Eq. (23) agrees with that, ~/R, ,  in Eq. (22). 
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In addition, Eq. (23) contains two externally controllable variables, c~ 
(amplitude of the external field) and Z0 (the pump parameter), defined by 

Z o = �89 a - Nb) (25) 

(N a = population of the upper level). A more detailed account of the time 
constants together with the parameters relating to the constraint is given in 
Table I. 

In the presence of an external coherent field ~, the amplitude a denotes 
the total field, which is the sum of the internally generated mode b and 
7, i.e., a = b + 7. The external field interacts with the atomic dipoles through 
the total field but is not subject to the dissipative effect through the cavity, 
which is expressed in the cavity loss term with damping constant ~c 
( = � 8 9  Apart from this, the deterministic part of Eq. (23) is essentially 
equivalent to that of (22). The treatment of  the noise part given in standard 
laser theory, however, is not very satisfactory for the thermodynamic pur- 
poses to which our investigation was devoted in I and which we will consider 
further in the next section. Here, we consider the "ba lance"  of gain and loss 
terms based on the macroscopic rate equation (23) without the noise part. 

Let us combine Eq. (23) with its complex conjugate and write the rate 
equation for the intensity of  the. field a*a  = n (photon number in quantum 
terminology) as follows: 

dn A n  
- 2 Re[to + i(co - v)] a~ - Cn + (26) 

dt  1 + s(v)n 

where C = 2~c ( =  v /Q,  where Q is the cavity quality factor (9)) and 

A = 711s(v)Zo (27) 

We can interpret the right-hand side of Eq. (26) by the assignments 

2 Re[~ + i(co - v)] a~: 
rate of work exerted by external field 

- Cn: 

power dissipation of field energy stored in cavity 
An~[1 + s(v)n]:  

power emission or absorption of energy by atoms, depending on A > 0 
o r A < 0  

The steady state is realized, therefore, by the balance among the above 
three terms, and we classify here two elementary steady states as follows. 
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3.1. Case of No External Field But 
Constrained by a Thermal  Pump 

For this case 

c~=O,  C n =  1 +s(v)n > 0  (28) 
v = o )  

(Z0 > 0: inverted population). A nontrivial root ns of this equation is given by 

_ A - C _ 71 ( Z  ~ _ Zth) = O ( N )  (29) 
n, s (co)C 2to 

under the threshold condition 

Z o > Z t h - - ~ C ' / l l  1 + (30) 
- 2g 2 7-1 ~ J 

This represents the lasing state (Fig. 1). We indicated in I that the balance 
between power emission by atoms and power dissipation to the cavity of 
the field energy expressed in (28) implies the existence of a heat flow in the 
direction atoms - ,  cavity, given by 

Jh = Ans i [1  + s(co)n~] > 0 (31) 

which is extensive [i.e., proportional to the number of atoms N by virtue 
of the relation (29); note that s = O ( N - I ) ,  A = O(1), C = O(1)]. Below 

l power 

~ A < O  ( population normal) ns 

cn 

J 
An 

I + s [ ~ } n  

( above threshold ) 

photon number 

Fig. 1. Illustration of laser instability. The point of  intersection ns of  the two power curves on 
the positive n axis represents the stable fixed point of  the laser rate equation above threshold. 
It is compared with a similar construction of ferromagnetism in mean~field theory, where 
spontaneous magnetization is predicted to occur as the intersection of the two curves on the 
magnetization axis below the Curie temperature. (Note, however, the difference between the 
equilibrium and nonequilibrium natures of  the two instability problems: in the laser, the straight 
line and the intersecting curve have the meaning of  "power ,"  i.e., a quanti ty of dissipation 
dynamics.) 
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threshold such a flow is still possible but is only O(1). Therefore, the 
formation of the lasing state upon the passage of the pump parameter  Z0 
through the threshold Zt~ from below can be characterized by a heat flow 
that constitutes the order parameter  of  this second-order phase transition. 

3.2. Case of No Thermal  Pump But 
Constrained by an External Field 

For this case 

pAln 
Re[~ + i(co - v)] ac~ = Cn + 1 + s(v)n' A < 0 (32) 

(Here the frequency v is interpreted as that of  the external field.) The power 
dissipation of  the field energy is both to the cavity and to the atoms, which is 
totally compensated by the work done by the external field. In this case, a 
heat flow exists in the direction : external field ---, cavity + atoms. Also, there 
exists an electric current induced by the total field. For  simplicity, we consider 
the case of  complete resonance, co = coo = v, and use the scaled variables 

X = S1/2Fl 1/2, y = Sl/2C~, 0 ~< X, y < aO (33) 

[Since s = O ( N - I ) ,  this scaling makes the fields represented by x and y 
intensive variables.] The relation between the current j = ~cy and the total 
field x is given by either 

o r  

2c "ix, - gZlZ~ (34) 
j = ~  1 + 1 +x2/Y c KTz 

1( 2c \-1 
x = ~  1 + i ~ x 7  ) j (34') 

This is just the equation first discussed by Bonifacio and Lugiato (1~ to 
demonstrate absorptive bistability (Fig. 2), and can be looked upon as a non- 
linear irreversibility relation. The nonlinearity causes, for c > 4, an interval 
of y (y,, ~< y ~< YM) where three allowed values of  x exist corresponding to 
a stable, a metastable, and an unstable point, and the transition from the 
branch of  lower values of  x to that of  higher values of  x can be under- 
stood as arising by a saturation of  the absorption of the external field when 
it increases. The treatment of  the deterministic equation alone predicts only 
the existence of  such branches but is not able to predict the precise point 
of  the first-order transition where the discontinuity of  x takes place. 
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x[ j x = y  
Ifotol fiel~ ~x~x(y) 

!~ y = x + ~  

[lower branch 
- -  y 

Ym YM 
z, 

external field 

Fig. 2. Illustration of bistable absorption (after Bonifacio and Lugiato~lm). The situation is 
compared with the hysteresis curve of ferromagnetism, where the abscissa and the ordinate 
correspond to the external static magnetic field and the magnetization, respectively. Here again, 
the dissipation dynamic nature of the bistability should be noted. 

4. EFFECTS OF NOISE. S T E A D Y - S T A T E  D I S T R I B U T I O N S  

The determinat ion of  the probabi l i ty  distr ibution which describes the 
stochastic process a(t) subject to the Langevin equat ion  (23) requires the 
precise fo rm and Gauss ian  characterist ic o f  the noise part .  We specify it in 
terms of  three e lementary  white noises J; F, and F= which arise in the start ing 
set o f  equat ions (set up in the Appendix) :  

where 

da 

dt 
-- [K + i(o9 - v)](a - o 0 + �89 d(v) Zo a 

1 + s(v)a*a 

+ ( f  + - i  9 d(v) �89 aF 0 (35) 
7• 1 + s(v)a*a F + 1 + s(v)a*a 

(f*(O)J(t)} = 2~:nc cS(t), n c = (b*b)~q = O(1) 

(F*(O)F(t)} = 27LIM 6(t), M = (R*R}eq = O(N)  (36) 

(fz(O)F~(t)) = y~M a(t) 

and vanishing correlat ions for all the other combinat ions .  
Equat ion  (35) has been derived by applying the adiabatic reduction of  

rapidly relaxin9 variables associated with the a tomic  degrees of  freedom, with 
a formal  inclusion of  the noise par t  in the start ing Langevin equations.  
Its validity is assured at least wi thout  the noise part ,  as discussed in the 
Appendix,  provided the condi t ion ~c, Iv - col << 7• Y Ik is satisfied. As to the 
noise part ,  on the other  hand,  the adiabatical ly reduced form of  the white 
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noise in (35) contains a nonconstant factor (and nonlinearity) in the 
coefficients, which causes a confusion in deducing the correct form of the 
Fokker-Planck equation for the reduced process a(t). This is due to a 
singular property of the white noise, which contains "spurious drift. ''129) 
A possible prescription to obtain the correct form will be found by taking 
as an example the Ornstein-Uhlenbeck process considered in Section 2. 

The Ornstein-Uhlenbeck (OU) theory is a fully dynamical treatment of 
the Einstein theory of Brownian motion such that the solution of (1) and 
(2) reduces to a spatial diffusion process x(t)  asymptotically for t--, oo 
(more specifically for t >> 1/7)/26) which can be realized by the adiabatic 
reduction method, i.e., just by setting du/dt = 0 in (2) and by inserting the 
form of u thus obtained into the right-hand side of (1). If the decay factor 
7 is a constant, this procedure yields 

dx 
_ 1 ~4 +J;(0 ,  . L ( t ) = ! s  (37) 

dt m'/ 8x  7 

and the use of (3) and (4) establishes the spatial diffusion process, for which 
the Fokker-Planck equation is written as 

~p kr  ~ / 1  ~ ~p5 
) (38) 

[The potential 4(x) is assumed to satisfy the binding condition (7).] Suppose, 
however, that 7 (>  0) is spatially nonuniform. The procedure then must be 
reexamined to decide the correct role of 7(x) with regard to the second-order 
differential operation in the Fokker-Planck equation. 

To find the answer, we first rewrite the Langevin equations (1) and (2) in 
the form of the stochastic differential equation 

dx = u dt (39) 

[ 1 8 ~ ]  
du = -7(x)u m ~ x  dt + 7(x)1/2 dw (40) 

where the Brownian motion (Wiener process) w(t) satisfies 

(dw(t)  dw(t) )  = (2kT/rn) dt (41) 

which conforms to (3) and (4). The prescription to carry out the adiabatic 
reduction of the velocity process u(t) is now summarized as follows: 

(I) The stochastic differential (SD) 71/2 dw in (40) should be considered 
in the It6 sense in order for the averaged motion to be consistent with 

dS(U)=-<7u)  m 
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(I[) Carry out the elimination of  the process u(t) by setting du = O and 
by inserting u dt  thus obtained into the right-hand side of (39), where the 
relation between the It6 and Stratonovich senses of the SD, viz. 

Y d X  = Y: ,  d X -  � 8 9  

( Y  o d X  is the Stratonovich sense), is utilized and products of more than 
three SDs can be discarded. 

(III) All the calculus in the above, algebraic and differential, can be 
performed just as the usual calculus in terms of the Stratonovich sense of  
the SD; in particular, for any differentiable functions f ( x ) , g ( x ) , . : ,  of the 
process x ( t )  

dAx) = & yx o ~ ~ dx = \~x & / -  dx 

A differential form of time f( t)  dt  is considered in the Stratonovich sense. 
(IV) Calculate the resulting drift velocity and the diffusion coefficient 

according to either the It6 or the Stratonovich formula by using (41) to get 
the Fokker-Planck equation (~~ 

d x  = b(x)  dt  + g (x )  d B  - ,  - -  = - -  
@ a 1 0 2 
at a x  ( - -  bp) + ~ a x  ~ (g2p) (1) 

= b(x)  dt  + 9 (x )  o d B  ~ - -  - - -  at - ax ( -  6p) + 5 ax --ox gp (s) 

if B(t)  is normalized such that ( r iB  r iB)  = dt. 

If these steps are followed in the OU process with nonuniform 7, one 
finds the Fokker-Planck equation for the reduced x ( t )  process: 

a, - ax m T ~  \ U r  ~x p + a x / j  

In particular, we have the steady-state solution 

1 
pst(x) = ~ e -~lxt'kT 

irrespective of the nonuniformness of 7. 

P r o o f 3  4 z l  In (38), 

71/2 de' = yl /2  c de' 1 ~},1/2 dx dw 
2 c~x 

where the difference between (a71/2/ax)o d x  and (a71/2/aX)dx is neglected 
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because it is O(dx dx dw) in the above expression. Then, setting du = 0 yields 

- Io( 07:/2-) 
1 34) d r + _  7 : / 2 o d w -  1 / 2 ~ - x  d x d w  

u dt - my 3x 7 

-- 1 04) 1 371/2 
- d t  + 7 - 1/2 o dw dx dw 

m7 3x 27 0x 

--194) 1/2 (~37-~/2  1 371/2~d x 
- rn 7 c ? x d t + 7 -  d w +  3x 27 Oxx / dw 

_ - 1 3 4 )  d t + 7 _ l / 2 d w  1 31og7dxdw 
my 3x 271/2 3x 

which is set equal to dx in (39) in accordance with the prescription. This 
means that the process x(t) is influenced by the white noise w(t), so that 
dx dw = O(dt), which is nonvanishing. This term can be calculated by insert- 
ing 7- 1/2 dw into dx, since dx = 7 1/2 dw + O(dt). Thus, on replacing (dw) 2 
by (2kT/m)  dt [which conforms to (41)], 

The resulting Fokker-Planck equation by means of the It8 formula is iden- 
tified with (42). QED. 

A full mathematical justification of the above rule for the adiabatic 
reduction is not yet available, but at present we consider the prescription 
as a plausible way to obtain the steady-state distribution in terms of the 
reduced process. Accordingly, the multiplication of  the white noise by the 
saturation factor [1 + s(v)a*a]-1 in the reduced process (35) is interpreted 
in the Stratonovich sense, as well as in 

dn An 
- -  = 2 Re[~c + i(co - v)] ac~ - Cn + + Z ( t )  (44) 
dt 1 + s(v)n 

where 

,~  (t) = ( a , f  4 - ig d(v) ) s(v)n 
71 1 + s ( v ) n a * F + c ' c "  + 1 +s(v)nF= (45) 

Then, the "spurious drif t"  that arises when rewriting (45) in the It6 equation 
(such that (noise)  = 0) is shown to give a noise correction of (26) as follows: 

dn A 
- 2 Re[K + i(co -- v)] ac~ -- C(n - n~) + (n - hA) 

dt 1 + s(v)n 

- s(v)n (46) 
-- �88 [l + s(v)n] 2 
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with n A = ~ r / ( - 2 Z o )  = O(1). Also, the correlat ion propert ies  (36) yield 

( tAnAt ~nd(t) (47) 
< .~*(0) .~( t )>  = 2 Cnc + 1 + s(v)n] 

The Lasing S t a t e .  In the absence of  an external field, i.e., ~ = 0, the 
phase diffusion can be separated,  and 

@fi?t =Lcp + LAp (48) 
where 

0 [  ( 1  @~] (49) LoP = ~n Cncn P + 3n]J 

CAp= N l + s(co)n + 

Both (49) and (50) are of  the fo rm (42), al lowing the steady-state distribu- 
tions Lop = 0 and LAp = 0 given by the canonical  ones e -n/"c and e -"/"~, 
respectively; for this reason the system can be adapted  to the Lebowitz  
model  of  a two-reservoir  open system. Above  threshold for which n A < 0, 
the steady-state solution (L~ + LA)p = 0 for the lasing state is approx ima ted  
by"* 

[ s(co)C (n - n.~)21 (51) p~(n) = const  • exp 2A(nc + [nA[) 

We emphasize  that  this distribution, characterist ic o f  the " f a r  f rom equilib- 
r i u m "  situation, is a " syn thes i s "  of  the two canonical  distr ibutions e -"/n~ 
and e -"/"A (see Fig. 3). 

The Bistable Steady State  of Absorpt ion,  ~3~ It is difficult to 
obta in  the exact s teady-state solution when ct # 0. However ,  for the resonance 
v = co = coo, the reduced rate equat ion (23) has a fixed phase point  4) = 0, 
and the F o k k e r - P l a n c k  equat ion can be approx imate ly  given by 

where 

with 

@/Ot = Lep + Lap (52) 

Lep ~- - ~ x  (~cyp) [x, y defined in (33)] (53) 

Lap= f - ~ D ( x ) ( 2 X p - - p +  (54) 
L v . c  x 

4 This is an improved form over the one discussed in I. 

(55) 
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0 rls - - - - - ~  N 

Fig. 3. A decomposition of the lasing distribution into two elementary distributions of canonical 
type. One component is actually f ic t i t ious because of  its negative temperature; i.e., an 
unnormalizabte distribution. This is of  no harm for the existence of the lasing distribution, 
because only its logarithmic derivative is concerned. 

Let us denote the steady-state solution (L~. + Ld)p = 0 by pr(x), which is 
expressed in terms of the potential @~(x) as ~ 

where 

exp 2 @y(x) const .x x t'Y(x I) dx'] 

( 2cx  
~,(x) = j  - ~ x + ~-T~x~ ] ,  j = Ky (57) 

An elementary integration gives explicitly 

1 2cy x 
(I)y(X) = 2SS (X --  y)2 + s(2c + 1) 1/2 tan-  1 (58) (2c + 1) 1/2 

For vanishing external field, y = 0, the solution reduces to the canonical form 
pe(n) = const, e -"/"c, which represents blackbody radiation. The minima of  
the potential @y(x) satisfy (~/Ox)~br(x) = 0, which is identified with the non- 
linear irreversibility relation (34). In the interval (y,,, YM) it exhibits a clear 
double minimum and an unstable point (Fig. 4). Recently, there has been 

5 The same result has been obtained by Gragg et alJ "*~ from the population-dynamic master 
equation associated with (26). 
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y~xJ=E~x-Y + zcVZ~c-tan-~ 'c=20 

[ I • 
0 I 0  

Fig. 4. Double minimum of the potential function qs~.(x) defined in Eq, (58), which exhibits 
the bistable absorption. 

considerable interest in the problem of multiple stability, (15,3~ s s) of which 
the explicit solution (58) offers a concrete example. 

5. EFFECTS OF NOISE.  II. EFFECT IVE  T E M P E R A T U R E S  

In their discussion of the laser linewidth in terms of the phase diffusion 
of the oscillating mode, Sargent e t  al. ~9) introduced an effective negative 
temperature, to be interpreted as giving a negative value of the average 
photon number  through the Planck formula ri~ = [ e x p ( h c % / k T m )  - 1]-~.(9) 
This is precisely what we obtained in the preceding section as the noise correc- 
tion of the photon number  rate equation; viz. nA given by (46). Therefore, 
we consider this concept as bearing further thermodynamic significance. 



kasing and Bistable Optical Systems 299 

Let us rewri te  the cor rec ted  equa t ion  (46), omi t t ing  the last term 6 o f  
O(sn): 

dn A 
- -  = 2 Relic + i(co - v)] ac~ - C(n - G.) + (n - hA) (59) 
dt 1 + s(v)n 

This express ion exhibi ts  clearly the role of  the noise cor rec t ions ;  each is a 
l imit  o f  the p h o t o n  number  n in con tac t  with the respective reservoir ,  i.e., n c 
with the cavi ty  and  nA with the a toms.  In such a cons idera t ion ,  the a tomic  
degrees o f  f reedom whose dynamica l  var iables  are represented  by R and Z 
(the complex  d ipo le  and  the popu l a t i on  difference, see the Append ix )  are 
i nco rpo ra t ed  into  one o f  the reservoirs  in con tac t  with the osci l la t ing mode  of  
the field (the physical  pic ture  behind the ad iaba t i c  reduct ion  o f  these 
var iables) ,  which provides  ano the r  conceptua l  basis o f  the Lebowi tz  model .  
This then enables  us to in t roduce  a deta i led ba lance  cond i t i on :  n c = nA in 
the absence o f  external  const ra in ts ,  i.e., e = 0 and  Z 0 = [equi l ib r ium value] ,  
which yields the termwise sat isfact ion o f  the s teadiness  condi t ion ,  dn/dt  = O. 

The two Einstein re la t ions  for n c and  M in (36) tell us that  

1 

G = (b*b)eq ( > 0 ) ,  n A - (R*R) r  (<~0) (60) 
Nb N .  

and the Planck fo rmula  for n c is compa t ib l e  with the deta i led  balance  
cond i t ion  upon  choos ing  ( R * R ) e  q = Na, which is satisfied by the sum of  
N independen t  Paul i  spins. However ,  the express ions  (60) are also compa t ib l e  
with deta i led  ba lance  when the o p e r a t o r  symmet r ized  form is assumed for 
b*b and R ' R ,  for which 

n~ = �89 coth(h~o/2kT~), nA = �89 coth(hcOo/2kTA) (61) 

Here,  the t empera tu re  T A ( ident ical  with T m in the l i tera ture  ~ is defined 
by N a = [ e x p ( - h c o 0 / k T A ) ] N  b in accord  with the usual  concept .  Our  discus-  
sion in subsequent  sections will show how the express ions  (61) p lay  a 
t h e r m o d y n a m i c  role in the laser system. 

6 The omitted term �89 + s(v)n] 2[s(v)n] is O(N-1) for the range n = O(1) (i.e., of the 
order of the thermal fluctuations), which ensures that the noise correction deduced is the 
unique answer in the same range [provided the Stratonovich sense of the SD is the correct 
interpretation for the noise part in (45)]. When n = O(N) (i.e., above threshold), the omitted 
term becomes of the same order as the n c, nA terms. But in such a situation, all the noise 
corrections become O(N-1) of the main term and thus are insignificant. The same remark 
holds for writing the Fokker Planck equations (48) and (52), where drift terms smaller than 
O(N- 1) of the main drift are discarded. 
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6. E N T R O P Y  P R O D U C T I O N  A N D  THE 
M I N I M U M  PRINCIPLE 

Lebowitz' formulation of the entropy production for a dissipative dy- 
namical system (19'2~ is based on the following two assumptions: 

(a) If the system is in contact with a single, inexhaustible thermal 
reservoir characterized by a temperature T = 1/kfl and its approach to the 
equilibrium state is governed by a Markovian evolution law of the form 
(d/dt)p = Lp, then the entropy production associated with the distribution p 
is given by 

d 
a(p) = dt Tr p( - l o g  p + log Pe) = Tr(Lp)( - l o g  p + log p~) (62) 

[Tr p(d/dt) log p = Tr Lp = 0], where the canonical equilibrium distribution 
Pe = (1/Zp) e-l~H satisfies 

Lpe = 0 (63) 

(We have used the quantum terminology of trace, which will allow an 
appropriate classical interpretation.) 

(b) Suppose that the system is in contact with more than two reservoirs, 
each of the above nature; the ith reservoir is characterized by T i = 1/kfii and 
its contact with the system is described by the operator L~, 

L,p~, = O, Pe, = (I/Z~,) e-~'H (64) 

and further suppose that the time evolution of the system is governed by 

dp/dt = L(mp + ~ Lip (65) 

where L ~m is a purely mechanical Liouville operator with a Hamiltonian 
[which may be different from the H in (64)]. Then, the entropy production 
associated with any distribution p satisfying the evolution equation (65) is 
given by 

a(p) = ~ ai(p), ai(p) =- T r ( L i p ) ( - l o g  p + log p~) (66) 
i 

One can take into account the effect of thermal constraints by the unequal 
temperatures and the effect of mechanical constraints by the external field 
expressed in L (m. 

A prototype of the entropy production associated with a system subject 
to the Fokker-Planck equation (42) is easily deduced: Let the equation be 
rewritten in the form 

3t ~xx D(x)p log ~- pe(x) = - -  e -~H(x) (67) 
Z~ 
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Then 

Tr(Lp)(- logp + logpe ) = - ~x D ( x ) p ~ l o g  log P~dx 
Pe 

by the use of  integration by parts and the boundary condition p = 0 at 
infinity. From (62), therefore, the expression (68) gives the rate of  increase 
of the relative entropy ~ p ( - l o g p  + logpe) dx, showing that the approach of 
the system to equilibrium is subject to the second law of  thermodynamics: 
The second representation in (62) allows us to interpret this rate as consisting 
of two parts: the rate of information entropy S = .[ p( - log p) dx and a 
second part, due to the canonical form log p~ = - fill, a heat flow divided by 
k T, so that 

~(p) = P(x) ~x l~  d x -  dt kT  (Lp)H(x)dx (69) 

The coefficient of (kT)- l  in the last term must be interpreted as a heat 
gained by the system (flowing from the infinitely large heat reservoir), in view 
of the transformation from the Schr6dinger to the Heisenberg picture: 

f (Lp)H(x) dx = f p(x)(L*H)(x) dx = (L*H)  (70) 

which implies the average of  the rate of the system Hamiltonian over the 
distribution p. 

Let us now obtain the entropy production a(p) for the many-reservoir 
open system under external fields governed by an evolution law of the type 
(65). Specifically, we consider the system governed by 

L(mp = -~a [v(x)p], Lip = ~xx DU)(x)P ~x log (71) 
~?X 

where 
p~(x) = (1/Zt~)e-P'mx) (72) 

and the "purely mechanical" nature of the operator U m is expressed as 

div v(x) = 0 - -  v(x) = const (one-dimensional case) (73) 

According to the Lebowiiz formulation, 

= X l o g - _  dx 
i " Pe,,/ 

= a t  - ~ <C,*H) i> 0 (74) 
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where 

S = p ( - l o g p )  dx, dt - ( L p ) ( - l o g p ) d x  (75) 

L is given by the total evolution operator, 

L = L Im + ~ L i (76) 
i 

Note that the condition (73) ensures 

f (L(mp) log p = (77) dx 0 

In the steady state Pst for which Lpst = 0 formula (74) yields 

o'(pst ) = - - ~ / ~  ) 0, Ji = (Li*H)~, (78) 

The entropy production a(ps 0 does not vanish in general unless the external 
constraints disappear, i.e., TI = T2 . . . .  and L (/fl = 0. For example, when 
the formula is applied to the Kramers equation discussed in Section 2, the 
result agrees with (14) for N charged particles in a uniform electric field and 
with (21) for the same system but in contact with two reservoirs of tem- 
peratures T 1 and T2. 

In I, we have shown that there exists a variational principle which 
determines the steady-state solution Psi, LPs, = 0, in the absence of an 
external field (i.e., L ~m= 0). It involves minimizing a functional of two 
independent distributions p and fi, o(/~,p), with respect to one of them fi, 
requiring that the minimum be satisfied by the special condition fi = p, for 
which the minimal value of a is identical with the entropy production o(p). 
This is a kind of self-consistency condition on the unknown distribution p 
that is shown to be equivalent to the steadiness condition Lp = 0. It can be 
extended to include the presence of an external field as follows. 

Consider the functional defined by 

c r ( / ~ , p ) : - - 2  f v ( ~ l o g ~ ) p d x + ~  f D ( ' ) ( x ) ( ~ l o g ~ ) 2 p d x  (79) 

It is lower bounded [i.e., a(/5, p) ~> e0 > - 0% with Oo a constant],  and takes 
the minimal value, when varied with respect to fi, for each fixed p. Then 
the following two conditions are equivalent(Z4): 

( i )  fimin(P) = P, where o'[fimin(P) , p]  = rain o(fi, p) (80) 

(ii) Lp = - ~x (vp) + ~x L \ ux  P~,/A 
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The proof is a straightforward extension of I, by noting that the additional 
term in the variation function (79) due to the external field depends on 
log fi linearly, whereas the remainder has a quadratic dependence. 

Here, we demonstrate how this variational principle can be used to 
obtain the steady-state distribution in practice. A simple example can be seen 
in free Brownian particles in contact with two reservoirs as discussed in 
Section 2: 

 (fi, p) = log pc,  

with 

pe,(u) = const, exp[-/3i(mu2/2)], 

+ --  log p du 

/3i= 1/kTi, i =  1,2 

(82) 

Let us choose the following form of the trial distributions p and fi: 

p(u) = (2n/m3) 1/2 exp[-/3(mu2/2)] 
(83) 

fi(u) = (2g/mfl) ~/2 exp [ - fl(mu2/2)] 

where /3 is an unknown parameter, and fl, also unknown, is the variation 
parameters. A direct integration of the right-hand side of (82) yields an ex- 
pression to be minimized with respect to fl: 

NIT1  72 1 (r(fi, p) = f i  ~ (fi - /3,)2 + f12 (fi -/32)2 (84) 

and set fi =/3 for self-consistency. This provides the expected result: 

( + )  7tT1 q- y2T2 7,72 N (T 2 T1)2 T = - , o'(Pmin) -- -- 
71 -}- 72 71 -}-72 T~ T 2 

in agreement with (19) and (21), respectively. 
It can be observed in the above demonstration why the condition of 

self-consistency is necessary to get the exact distribution by the variational 
principle: one might be tempted to set up the variational principle directly 
by minimizing the functional a(p) with respect to the normalized distribution 
p to get the result, as motivated by the thermodynamic principle of 
"minimal entropy production." If  this is applied to the above simple 
example, (84) is then replaced by 

N I-7, 7e ] 
a(p) = /3 1_/31 (/3 -/3i)2 +/32 (/3 - flz)2 

to be minimized with respect to/3. This does not give the right result, due to the 
extra factor of variation /3-1 in front of the bracket. Clearly, this factor 
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arises from the distribution p over which the remaining quadratic quantities 
are averaged to evaluate a(p). 

Therefore, the self-consistency condition tells us the two different roles of 
the distribution p in the functional by denoting them as/~ and p; viz. the 
varying distribution/~ and the averagin 9 distribution p, the latter not being 
subject to the variation: fi is considered as the distribution containing the 
effect of fluctuations acting on p, and the variation is to be made against 
such fluctuations (the spirit of "local potential"~36'37)). 

This variational principle can be used for more complex nonlinear 
problems in accordance with (80) and (81). In a separate paper we show that 
the laser distribution (51) is indeed a consequence of it (by a trial distribution 
of the form p(n) oc exp[- f l (n  - ns) 2] with two variation parameters fi and 
ns): the distribution is synthesized as the optimum of two elementary 
distributions of thermal equilibrium type, and the present variational 
principle shows just how to optimize them. 

7. T H E R M O D Y N A M I C  RELATIONS 

Suppose that a dissipative dynamical system is subject to an evolution 
equation of the standard form (65), expressed in terms of Fokker-Planck 
operators on its probability distribution p, i.e., 

@ L ( m p  + L i p ,  L ( m p  = 
a--i = i - 

(div v = ~?vu/~x . = 0), and 

a Df{(x)p log p + kT~ ]3 (85) Lip = ~X~ 

(the usual summation convention for repeated indices is implied). Then, the 
first and second laws of thermodynamics, 

dE = 6 W + ~ cSQi (plus sign for a gain of the system) 
i 

1 
dS >~ ~ - -  (SQi  (entropy in dimensionless units) 

i kTi 

can be identified in the statistical mechanical model (85) with the following 
J 

expressions: use the notation for an average ( X ) =  ~ X(x)p dx, and E = 
( H )  and S = ( ( - l o g p ) )  for the internal energy and the entropy, respec- 
tively. In a time interval dt (on a macroscopic scale) 

d E  = d t  (L*H(x)) (86) 

dS = dt ( ( - L *  logp))  (87) 
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where the total differential d is assigned only to the total evolution operator 
L* = L (H)* -}- ~i  Li* given by 

3X 
L~H)*x (88) ~- U~ ~Xu 

Li*X = Ox. \--u, c?x~/ kTi Ox. (?x,, 
(89) 

For the other component differentials the notation 6 is used and 

6 W = dt (L~m*H) = dt u 

3 Q i = d t  (L i*H)  = d t ( /  0 (D 'i) OH) D~i,~ c?H c?H)  
\ ~ x ,  \ "~ ~x~ kTi c?xu ~ (91) 

We now discuss the application of this to our optical system. 

7.1. The Lasing State 

The state of affairs where a self-oscillation is taking place but the power 
it generates is still confined inside the cavity (of Fabry-Perot type) can be 
represented by the evolution equation (48) with the Liouvillian L = 
L c + L A given by (49) and (50), i.e., 6 W =  0. At the steady state dE = 
dS = 0, so that the two thermodynamic relations become 

L 
where 

he) he) , he~176 coth h~~176 
kTc -= 2 -  c~ 2 ~  c IOTA=-- 2 2 k ~  (93) 

in accordance with (61). Thus, positive T c and negative T A above threshold 
indicates merely ~QA > 0 (heat flows from the atoms). However, this is just 
a realization of the ideal heat engine: it takes heat from a reservoir of 
higher temperature and supplies heat to another reservoir of lower tempera- 
ture, and the negativeness of the higher temperature admits the possibility 
that the efficiency of the engine can be 10070 without violating the second 
law, provided the original formulation is properly revised (a new type of 
"perpetual motion"~4'6)). This can be seen by introducing the work - 6  W 
in the energy conservation relation, i.e., 6Qc = -3QA + 6 W, in place of (92) 
and substituting it into the inequality of the second law, obtaining that 

r I -- 0 W/(~QA <~ 1 - T~/T A < 1 for TA > 0 (94) 
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but the negativeness of T A makes it possible that the maximum value of r/ 
can exceed unity. It actually takes a value > 1 provided 6Qc > 0 (correspond- 
ing to the situation that the engine takes heat from both reservoirs, 
possibly cooling the lower temperature reservoir). Even if 6Qc is restricted to 
negative values, t/ can be made arbitrarily near to unity by reducing the 
dissipative loss 6Q~. 

A simple expression of the efficiency of the laser in the present model 
can be obtained under the assumption that the energy flow from inside to 
outside of the cavity is expressed by an additional drift velocity - B n  in 
the Fokker-Planck equation (48), where B is a positive constant deter- 
mined by the structure of the cavity (it pla~fs the role of a sink with respect 
to the power generated inside the cavity without dissipation). This yields 
t 1 = B/(B + C), which agrees with what is known from laser technology. ~3s'39/ 
A precise determination of the efficiency requires the conversion ratio of the 
work versus the power so emitted, which can be unity only for ideally 
coherent laser light. (v) 

7.2. Bis table  S t e a d y  S t a t e  of  A b s o r p t i o n  7 

The system can be modeled by an assembly of gas atoms inside a ring 
cavity irradiated by coherent laser light, which is reemitted, (31) sometimes 
called resonant fluorescence, accompanied by absorption; this is a typical 
nonlinear response phenomenon. Let it be described by the simplified 
Fokker-Planck equation (52) with (53) (55). The dissipative part L d in (54) 
corresponds to L c + LA in the laser, but here represents a system in contact 
with a single reservoir due to the condition of detailed balance T~ = To. 
The thermodynamic relation for the steady state is accordingly given by 

0 >~ - 6 W I T  c, 6 W =  -(6Q~ + 6QA) (95) 

indicating that 6 W > 0. 
The quantity TFI 6 W  in the above relation represents the entropy 

production at the steady state (for a time interval dt), which can be cal- 
culated either by formula (90) or by a formula of the form of (69), i.e., 

o-(pst ) = D(x)_=- log Pst_ Pst dx (96) 
\ o x  Pc~ 

with Pst(x)= py(x) given by (56)-(58) and pc(x) = p~=o(x). The result is as 
follows : 

o-(Pst ) = (j2/D(x)> = (2/sn~)j(x) (97) 

7 Recently, a new problem of "chaotic" steady states has arisen with regard to dispersive 
effects. ~*t) 
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where x and y = K- lj are the amplitude of the total field and the external 
field, respectively, scaled as in (33), and D(x) is the nonconstant diffusion 
coefficient of the Fokker-Planck equation (52), given by 

D(x)=~ l + ~  (98) 

Clearly, the first term in the parentheses 1 corresponds to absorption of the 
total field by the cavity wall and the second 2c(1 + x 2)- 1 to absorption by the 
atoms, whose relative importance determines the bistable points; its non- 
constancy is therefore linked intimately with the potential Oy, (58), in the 
steady-state distribution: The problem of relative stability, i.e., the deter- 
mination of the allowed value x of the multiple roots of the nonlinear 
relation (34) for a given y, can be solved by finding the absolute minimum 
of the potential @y(x), as noted by several authors, (31-33) and therefore the 
phase transition at which the discontinuity of x occurs is identified with Yo ; 
the coincidence point of the double minimum of the potential ~y is such that 

fx'~( 2cx )~(x) x +  1 T x  2 Yo = 0 ,  c > 4  (99) 
1 

which is equivalent to the Maxwell construction of the transition point (see 
Fig. 5). Hence, the averaged quantity (x} is a single-valued function of y 
analytic except in the vicinity of Yo, where a discontinuity takes place, the 
discontinuity being rigorous in the thermodynamic limit, N S = s-1 -~ oQ. 

This discontinuity is precisely what arises in the second representation 
of the entropy production given by (97), proportional to j(x}: It justifies 
the conventional writing of the entropy production as [flux] times [force] 
in the sense of an ensemble average over the steady-state distribution far from 
equilibrium, where the average of the [force] is a nonlinear (discontinuous) 
function of the [flux]. Indeed, this nonlinear flux-force relation is given by 
the following identity due to the two representations in (97): 

<x> = 1 + / j  (lOO) 

[cf. (34')], yielding the rigorous meaning of the Onsager coefficient in this 
nonlinear irreversibility. We remark that the entropy production so estab- 
lished has no meaning with regard to the indication of the relative stability: 
At the transition point Yo, the lower value of (x} is more stable for y < Yo, 
but the higher value of (x} is more stable for y > Yo- Instead, the 
averaged quantity (x )  in the entropy production plays the role of order 
parameter in such a dissipative phase transition, indicating the existence of 
an ordered phase in the lower branch where the entropy production is 
anomalously small. 
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Fig. 5. Ensemble average ( x )  over the steady-state distribution (56) with (58), vs. ),. The 
point of  discontinuity Y0 can be determined by the "equal  area'" rule in the scaled coordinate 

= Sg {1 + 2c/[1 + (x')2]} -1 dx' (the two hatched regions are equal in area). 

8. D I S C U S S I O N  

A basic issue that cannot be overlooked for the present approach is Van 
Kampen 's  criticism of the use of  the nonlinear Langevin equations. Actually, 
his criticism extends to the possibility of  describing physical processes of  a 
stochastic nature by means of the Kolmogorov  equations (which by itself is 
mathematically acceptable, see Ref. 35, discussion part), and so we divide the 
criticism into two claims. The first is the claim ~17) that real errors can arise 
if a Langevin equation with a nonlinear deterministic part  is constructed 
just by supplementing it by a Gaussian white noise term with a constant 
strength. Our treatment of  the laser Langevin equation (35) is free from 
this danger, in view of its derivation from the starting simultaneous 
Langevin equations on the basis of the stochastic calctilus. We point out 
that it is necessary to establish a mathematical foundation of the method 
of adiabatic reduction including noise terms: Otherwise, the prescription dis- 
cussed in Section 4 cannot be put on an entirely solid basis. We also note 
that the starting set of the Langevin equations itself should be subject to 
this warning, but we have a sound basis in the Brownian motions of  photons 
and spins discussed in I. 
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The second claim is the assertion that, from the standpoint of the so- 
called D-expansion of the master equation, general diffusion processes with 
nonlinear drift velocities and nonconstant diffusion coefficients as functions 
of the state variables are possible only under the special circumstance that 
the first term of the f~-expansion vanishes identically: otherwise, a consistent 
description in terms of second-order differential operators should be re- 
stricted only to those with linear drift velocities and constant diffusion 
coefficients (though they may be complex functions of time), and if one 
wishes to go beyond this stage of approximation it is necessary to take into 
account higher order derivatives for the consistency of the expansion 
scheme. ~18) This is a rather strict statement, which our laser Langevin 
equation and hence the corresponding diffusion (Fokker-Planck) equation 
really do not fit. [Note that in our laser system the expansion parameter f2 is 
given by N, i.e., the total number of atoms, and by this interpretation the laser 
Langevin equation (35) is classified into the third case (18) of Van Kampen, 
where he rejects going beyond the linear fluctuation in the vicinity of the 
stationary point within the "diffusion approximation".] 

We have no further comment on Van Kampen's criticism, but maintain 
the plausibility of our standpoint. We note in this respect that there exists 
another scheme of expanding and truncating the quantum master equation 
for a laser which reduces to the laser Fokker-Planck equation (48) and 
which also takes into account the essential quantum fluctuation effect repre- 
sented in formula (61) (see the Appendix of I). 

APPENDIX.  LASER RATE EQUATION FOR 
TWO-LEVEL A T O M S  

Let us denote the five random variables of our optical system, as in I, 
as follows: b, b* are the complex amplitudes of the mode of the em field, 
which may grow; R, R* are the complex amplitudes of the atomic dipole 
collective mode; Z is the total atomic population difference = �89  Nb), 
where a denotes the upper and b the lower level, respectively. 

Further, we assume that the system is irradiated by a coherent external 
field c~,, which is added to the mode amplitude b. Then, it is plausible to 
describe the purely mechanical motion of the system by means of a 
Hamiltonian given in the rotating field approximation by 

H = hcob*b + hcooZ + hg[(b* + ~*)R + (b + ~)R*] (A1) 

where the frequency co is associated with the mode, coo with the dipole, 
and g with the interaction between the dipole and the total field. (In I, 

we used the notation 2 / ~  for g to indicate that this coupling constant is 
O ( N -  1/2), where N is the total number of atoms in the cavity.) The equations 
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of motion for these variables can be obtained by using the commutat ion 
relations [b, b*] = 1, [Z, R*] = R*, and [Z, R] = - R  in the quantum 
mechanical analog of a harmonic oscillator and an angular momentum 
vector, respectively, of  the system under consideration in a classical 
mechanical framework : 

b = - i e ) b  - igR, 1~ = - i c o o R  + 2igZ(b  + ~t) 
(A2) 

2 = igE(b* + c~,*)R - (b + c~t)R* ] 

The effect of  the thermal environment on the system can be taken into 
account by supplementing each equation by a systematic damping term and 
a residual noise term, i.e., by making it a Langevin equation. The most 
convenient way to do this without losing internal consistency is to adopt the 
model of  linear Brownian motion for each dynamical species, taking (b, b*) 
and (R, R*, Z)  in the absence of coupling, yielding the picture of  Brownian 
motion of photons and that of spins, respectively, as discussed in I. This is 
still valid in the presence of the external field ~t, where it is assumed 
simply not to be subject to the damping and noise. Then, it can be shown 
that a consistent choice of the field variable is not b but the total field 
a defined by 

a - b + c~ (A3) 

The set of  Langevin equations is written, accordingly, as follows: 

= - ( t o  + io))(a - :~t) + (~ - igR + j ;  fi* = c.c. 

/~ = -(7:_ + ioao)R + i29Za + F, /~* = c.c. (A4) 

2 = -711(Z - Z0) + i9(a*R - aR*)  + F~ 

where the usual white noise character and the Einstein relation will be 
assumed for the noise part. [The reason for the choice of a for the field 
variable rather than b is that by this choice the role of external field is 
expressed as a sourceless drift velocity--its divergence vanishing--in the 
Fokker-Planck framework associated with (A4) as well as with its adiabatic 
reduction, as discussed in Section 6.] 

It is convenient to reexpress Eq. (A4) in the rotating frame with 
(arbitrary) frequency v, i.e., in terms of  the transformed variables a = ae TM 

and /~ = ReiVt: 

c~ = --[K + i(co -- v)](a - ~t) + (iv + d:t/cxt)~ , - igR + f  

/~ = - [;;• + i(co o - v)]/~ + i2gZd + F, c.c. (A4') 

2 = - ? ~ ( z  - Zo) + O ( d * K -  aK*) + f~ 
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where the frequency v is determined best for the steady situation. Sup- 
pose that the external field is harmonic with a single frequency co s 
[a t = ~ e x p ( - i c o , t ) ]  and the field is induced by this external field. Then, 
in the steady state, v = col should be the appropriate  choice for which the 
term (iv + 0i,/c~,)c~, vanishes and the resulting deterministic part  of  (A4') 
becomes autonomous.  However, if the system becomes self-oscillating 
(lasing), a proper frequency of the oscillation is determined, which is given 
in the present model by 

v = (tcco o + ?• + ?s) (A5) 

This frequency makes the imaginary part  of  the secular determinant for d 
and R on the right-hand side of  ~ and /~ in (A4') vanish. Under this lasing 
circumstance, the real part  of  the determinant also vanishes, the threshold 
value of  Z being attained, so that a linear relation is formed between a and/~. 
This is given either by 

/~=  (1 +~C/y__)2iyZth a (A6) 
1< + Y• - i(co - coo) 

o r  

where 

c/= - ( 1  + 71/tc)ig /~ (A6') 
tc + 71 - i(co - coo) 

292L + 

We now present an argument to justify the "adiabat ic  elimination." 
Suppose the situation ~c << 71. Then, v -~ co by virtue of  (A5) and, at 

the same time, coo - v --- - (co - coo), so that the relation (A6)just arises from 
/~ = 0 in (A4'), where the noise part  is disregarded. [Similarly, in the opposite 
case, ~c >> ?• v ~- COo and co - v -~ co - coo, for which the relation (A6') is 
the consequence of a = 0. We do not go into this situation.] This suggests 
that we choose the frequency v of the rotating frame equal to co, the 
frequency of the mode, and eliminate /~ by substituting expression (A6) 
(~c << 7z) into the other two equations. For  the 2 part, this gives 

2 = - 711(z - Zo )  - 7 JIs(co)Zn ( A 8 )  

and the threshold condition that is obtained in combination with the other 
equation ri is consistent with (A7). Therefore near the steady state, it further 
suggests that we eliminate Z to get a single equation for fi from 

= 0, Z = Zo/[1 + s(co)n] (A9) 
where 

s(co) = ( 4 f / 7 1 ~ • 1 7 7  2 + (co - coo)2]} ( A ] 0 )  
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Actually, the procedure o f  adiabatic elimination is expected to have a 
wider applicability than the above discussion, provided that  the inequalities 
on the basis of  which Eq. (23) is derived, ~, Iv - ~o1 << 71, 7iL, are satisfied. 
Also, Eq. (35) is the formal application o f  the same procedure to include 
the noise part  in (A4'). 

N O T E  A D D E D  IN P R O O F  

After submitting this paper, we have carried out  a detailed analysis of  
the adiabatic reduction o f  fast variables f rom a set of  Langevin equations, 
obtaining a result that  indicates the full validity o f  the reduced F o k k e r -  
Planck operators  given by (50) and (54), but  also the necessity o f  a certain 
modification o f  the prescriptions (I)-(IV) in Section 4. This means that  the 
form (46), derived when (I)-(IV) are literally applied to the starting laser 
Langevin equation (A4), is incorrect. Accordingly,  footnote  6 becomes a 
superfluous statement. This matter will be reported separately [see also 
Ref. (42) and (44)]. 
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