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Nonequilibrium Thermodynamics of
Lasing and Bistable Optical Systems!
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A simple model of nonlinear optical systems exhibiting instability—such as in
laser action and in bistable absorption—is presented that provides a prototype
of nonequilibrium thermodynamics on a statistical basis. The adiabatic reduction
of the atomic degrees of freedom in a revised Langevin treatment establishes a
fully consistent framework in which the active electromagnetic field mode is in
contact with two thermal reservoirs (the cavity and the atoms) as well as being
acted tipon by an external field. The results are summarized by the first and
second laws, dE = 6W + 8Q, + 6Q , and dS > 6Q,/T. + 60 ,/T,, with the statis-
tical mechanical representations of the entities therein exhibiting the nature of the
mode; i.e., (a) a heat-engine structure operating between two reservoirs of
temperatures T, > 0 and T, < 0 for the laser, and (b) a nonlinear response
against external work balanced by a single reservoir (7. = T,) for the absorptive
bistability.

KEY WORDS: Lebowitz model of many-reservoir open systems; stochastic
calculus; detailed balance; heat engine; nonlinear Onsager coefficient.

1. INTRODUCTION

In a previous paper'" (hereafter referred to as I), we discussed how a statis-
tical theory of dissipative dynamics can be converted into its thermodynamic
description, considering in particular a laser system. This system is presum-
ably the simplest possible example of the instability of dynamics with only
a few degrees of freedom, and has been the subject of many studies (it is
in fact the first example and prototype of Haken’s synergetics?). To our
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knowledge,® however, a full thermodynamic formulation is not availabie for
the macroscopic, steadily streaming aspect of the phenomenon on the basis of
microscopic laser theory. The present paper extends [ to complete such a
formulation: We obtain and discuss thermodynamic relations in situations
far from thermal equilibrium involving phase transitions; we include the
first-order phase transition induced by an external, coherent field—the
so-called optical bistability of recent investigations*®'!—as well as the
second-order phase transition induced by the usual pumping, i.e., lasing.

Our approach is not especially novel ; the method of Langevin equations
was used in the very beginning of laser theory, but is now revised sub-
stantially and incorporated into the study of stochastic differential equations
(see I). Here, one starts with a set of macroscopic rate equations relevant to
the phenomenon and supplements them by stochastic force terms of Gaussian
white noise character. It is then possible, in principle, to find the distribution
of the system, in particular for the steady state, which provides all the
necessary information about the thermodynamics. Investigations of the
steady-state distributions for stochastic systems including the solutions of
Fokker—Planck equations in the above Langevin approach are quite popular
in various branches of statistical physics.

After submitting paper I, we became acquainted with the work of
Landauer. He started with a study of fluctuations in bistable tunnel diode
circuits,'*? and has since published a number of papers'’3~'® treating
various nonlinear systems similar to the laser in an attempt to establish the
connection between the steady-state distribution of such a system and its
thermodynamic characteristics; in his terminology,'*® ““dQ = T dS far from
equilibrium.” The present discussion is in agreement with the motivation and
starting point of his approach, but we present a more useful form of the
thermodynamic relations than his “dQ = T dS™’; we develop our results step
by step in subsequent sections. To focus on the point of difference, we cite
a paper by Landauer and Woo® presented in 1972, and especially the
discussion of it, where two important questions were asked, one by Fisher,
who questioned the formula | plog p dg for the entropy, on the basis of
which the authors discussed the quantity T dS, and the other by Van Kampen,
who expressed a doubt, which would be rather serious for the entire Langevin
approach in the nonlinear regime, concerning the use of the so-called
“nonlinear Fokker-Planck equations.”

Van Kampen’s objection has been given in a concrete statement in his
systematic expansion scheme of the master equations,’-'® and the present

3 The thermodynamics of the laser must be the prototype of thermodynamics involving negative
absolute temperatures, where a revision of the second law is inevitable“~ (see the formulation
by Nakagomi®). Such work, however, does not refer to standard laser theory.*® Our main
concern is to fill this gap. ‘
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approach must be subject to his criticism. A discussion of our standpoint
of being based on the nonlinear Langevin equations will be postponed to
the last section. Here, we note that there is nothing wrong or inconsistent
in the present framework, at least for obtaining the steady-state distributions,
which we attribute to the effectiveness of the stochastic calculus in con-
junction with a consideration of detailed balance: it clarifies some confusing
points with regard to nonconstant diffusion coefficients.

As to the problem of the relevant introduction of entropy, we point out
that there exists a satisfactory theoretical framework due to Lebowitz,(1°—22)
which we call the Lebowitz model of many-reservoir open systems: by means
of this model, the concept of entropy production (rather than entropy itself)
can be introduced such that the thermodynamic and information-theoretic
contributions to it are compatible with each other and also with the second
law of thermodynamics. We expect (and in fact verify, though not claiming
generality) that a class of nonlinear systems of interest, including the laser
and those considered by Landauer, can be adapted to the Lebowitz model.
Recently, Spohn and Lebowitz?® gave a revised version of the model,
proposing a formulation of the principle of minimal entropy production.
We supplement this formulation by incorporating Prigogine’s idea of the
“local potential,” including the presence of external ficlds, so that it can be
used to characterize the steady state beyond the linear regime of irreversible
processes.?* On this basis, we discuss some thermodynamic aspects of our
laser system.

The general thermodynamic relation we deduce is nothing more than the
familiar form dS = 3, (1/T;) 6Q;, but we show that the Lebowitz formulation
provides an accurate expression for each entity in this formula and that all
the characteristics of the situation far from equilibrium are fully contained
in expressions averaged over the distribution. For the steady lasing state,
the formula exhibits an ideal heat engine operating between two thermal
reservoirs, one characterized by a negative and the other by a positive
temperature. For the state of absorptive bistability, it is related to a typical
nonlinear Onsager coefficient of the irreversibility relation, by which the con-
ventional expression of the “entropy production” can be based upon the
ensemble-averaged version, where the real meaning of entropy production
can be seen.

2. DISSIPATIVE DYNAMICS OF A SYSTEM DRIVEN BY
MECHANICAL AND THERMAL CONSTRAINTS

The Brownian motion of a particle in one dimension affected by a
potential field and a friction due to the environment—the well-known
Ornstein—Uhlenbeck process®®) in a general potential field—will be discussed
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in this section for the purpose of illustrating the Lebowitz model. If x
and u denote the position and the velocity, respectively, of such a Brownian
particle of mass m, then the set of Langevin equations governing the motion
is given by

dx

du 1 é¢
P L i (10 @)

In the latter equation ¢(x) represents the potential function, y the friction
constant, and f,(z) the residual fluctuating force, which is assumed to satisfy

Sy =0, S0V £L0)) = 2D, 6(1) &)

(i.e., the assumption of stationary Gaussian white noise), as usual. Then, it is
known that the constant D, of the strength of the fluctuation is related to the
equilibrium value of the kinetic energy of the particle:

D, = y{u*)q = vkTm (4)

namely, the fluctuation dissipation theorem, or, more specifically, the Ein-
stein relation. 527

The probability distribution p(¢; u, x) and its steady-state form pg(u, x)
[which is attained by taking 1 — oo of p(t;u, x)], over which the time-
correlation function of the form {XX(r)) is calculated, satisfies the Fokker—
Planck equation (specifically, the Kramers equation®”)

2
@=%(—up)+—a—<ﬁd—’p> )+ WLIE )

ot Ju\m 0x m ou?
In particular,

vk T 0%p,,

0¢
pst>+va(pst)+m 82 (6)

0
Ozax( upx) + 3, (m Ox
Let the potential function ¢(x) be lower bounded and satisfy
P(x) > + o for x » + oo N

so that the particle is fully bounded in it. Then, the canonical distribution
of the particle in thermal equilibrium

1
peq(u’ x) o cxp{-—ﬁ [mi + ¢(X):!}
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formally satisfies Eq. (6) because

o 104 0 kT 0
<—Ma+gagg>Peq—O» V(U‘}‘*n:%)hq—o (8)

which in general yields a unique steady-state solution of Eq. (6): The property
(7) guarantees that the function e~ /D¢ ig normalizable in the entire x
axis, so that over the equilibrium distribution

1 [27kT\'? 1 [ m?
peq( 5 X) = N ( > exp{ —¥[ + d)(x):l}

Z(9) = f exp[ —Pp(x)/kT] dx
the average values {u)., and {J¢/0x),, vanish, and together with {f(r)) =
0 for all ¢, the steadiness conditions

d d
(=0 =0 (10)

are satisfied.

The physical picture behind the above argument is clearly that the
Brownian particle, being in contact with a thermal reservoir of a definite
temperature T, i.e., affected constantly by the fluctuation force from the
reservoir, tends to its equilibrium position determined by the average over
the distribution p,,. The stationary, Gaussian white noise characteristic (3)
together with the Einstein relation (4) bridge the kinetics and the thermo-
dynamics, ensuring the overall consistency of the argument. We consider
two possible modifications of the standard argument of this kind; first, to
remove the assumption that the particle is completely bounded in the
potential ¢ as indicated in (7), and second, to generalize the thermal
reservoir with which the particle is in contact such that it is not restricted
to a single reservoir of a definite temperature, but involves more than two of
them, each satisfying (3) and (4), but having different y’s and 77s.

2.1. First Modification

Let us consider the simpiest case, viz. d¢/0x = const, — o0 < X < c0.
This corresponds to free Brownian motion under the action of a uni-
form external field F=—0¢/0x, for which the formal solution
exp[ — (1/kT)(mu?/2 — Fx)] is obviously irrelevant to the equilibrium. There
exists a relevant distribution that satisfies the Kramers equation (6) in this
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_[2mkT\'? m ry
pults ) == = | expl —glu = o (11)

., o/ F kT @
= 0 —_— _— — =
“ox ’ Ju [( m * W) + m @u:lpSI 0

d F
E <x>st = <u>sr = };’I; # 0 (12)

casc:

for which

The steady-state distribution p, (11), differs from the equilibrium one p,,,
(9), with ¢ = 0, due to the presence of the external field F, which can be
considered as a mechanical constraint driving the system from thermal
equilibrium. Let us suppose that our system consists of N such particles in a
unit volume, each carrying a charge e, and regard the field F as an electric
field: F = eE. Then Eq. (12) just represents Ohm’s law,

J = Ne(u), = oFE, o = Ne?/my (13)

and elementary irreversible thermodynamics?® tells us that it is associated
with a nonvanishing entropy production given by

1 | .
7 E= 0B >0 (14)
It will be shown that an information-theoretic construction of entropy pro-
duction in the spirit of the Lebowitz model agrees with this result. Also, there
exists a class of more general potentials such that d¢/0x # const and yet
the particle is not fully bounded. Landauer’s example of a tunnel diode circuit
belongs to this category, and the steady-state distribution in such a case
requires more elaborate treatment (to be given in a separate publication).

2.2. Second Modification
In Eq. (2), we assume that

y=v v, LD =100+ 120 (15)

and in place of (3) and (4) we have
P> =0, SPOP@)> =2DP 6 6(n) (16)
DY = v.kT,/m, ij=1,2 {17

These imply that the Brownian particle is affected by the fluctuation forces
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of two independent thermal reservoirs of temperature 7', and 7,. The
associated Fokker—Planck equation (5) is now replaced by

op b 8 /1 8¢

E_é‘x( up)—l—w;(mfp)

ky Ty + ky, T, 0%p
ou*

2 L+ 2wl + as)
u

Suppose that the potential ¢ satisfies the binding condition (7). Then it is easy
to check that the steady-state solution of (18) is of the form (9) [for which
the separate satisfying of p,, in the form (8) holds] but now having a
temperature 7 given by

T=T+ 7T/ +72) (19)

Thus, the Brownian particle under consideration obeys a steady-state dis-
tribution which is still of thermal equilibrium type but is identical to neither of
the two equilibria corresponding to the temperatures 7; and T, (unless
T, = T,). This provides the most elementary example of a Lebowitz-type
two-reservoir open system, considered as driven by an external constraint
which is not mechanical but thermal: the thermal driving here is evidenced
by a heat flow produced from the higher temperature reservoir to the lower
temperature one, given by

= Nk, - T) (20)

Vit 7Y

for the N-particle system. The Lebowitz formulation (see Section 6) then
predicts that this 1s associated with entropy production as follows:

1 1 V2 N
Jl———]= T, -T,)*>0 21
h(le kT2> Y1+ P2 T1T2( g 1) @

The above two examples demonstrate how a nonequilibrium steady state
is formed by an external constraint and how its nonequilibrium characteristics
can be indicated by entropy production. Although they are in the context of
linear irreversible processes, the considerations can be extended to more
complex nonlinear systems involving instability and a phase change: This
is the state of affairs in a laser system.

3. MACROSCOPIC DESCRIPTION OF A
SIMPLE NONLINEAR OPTICAL SYSTEM

The Langevin treatment of the laser rate equation is a substantial chapter
in standard laser theory, and here we cite a specific form of the equation of
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motion for an active mode of the em field from Sargent er al.'”) (Chapter 20):

v F*D(w — V)N

d .

If the quantity G(¢) is omitted in this equation, it becomes a deterministic
rate equation for the amplitude A(¢) of the mode, and the inclusion of the
noise G(z) makes the process A(r) stochastic. It is derived by eliminating
variables of the atomic degrees of freedom (the complex atomic dipole
collective mode and the population difference of two atomic levels besides
A4 and A*) from the starting set of Langevin equations for six random
variables. To be self-contained, we outline the derivation within our context
in the Appendix, leaving a further account of Eq. (22) to Table I. We
obtain the equation for a(r) [ = A(#)] in the form
1 v
%=~[K+i(w—v)](a~a)+%
in terms of three frequencies (w, w,, v), three damping constants (x, 7. 7).
and the saturation factor s [and s(v)] related to the field-atom coupling
parameter g through (N = total number of atoms)

5= 4!]2/?’;17& =0(N"YH (24)
s(v) =sd*v)dv), dv) =y /lyL +iv —w4)] (24)

a + (noise) 23)

Table I. Auxiliary Parameters

Notation*®
This work Ref. 9 Meaning

0} Q Frequency of the active mode

we w Frequency of the atomic dipole = (1/ANE, — E,)

v v Frequency of the rotating frame
= (kwy + 7, w)/(x + y,) ~ o for lasing (x « 7))
= frequency of the external field

K Lot Cavity loss

Vi b Relaxation rate for the dipole

74 (ya +15)/2  Relaxation rate for the population difference

Zy v Pump parameter [ =4(N, — N,) without saturation]
<0 for ordinary, >0 for inverted population

o Amplitude of coherent external field

%y, and y, denote the relaxation rate of the a (upper) and b (lower) level popula-
tions, respectively, of the two active levels in Ref. 9. Because of the difference
in the models, however, a different identification y, = 2y,,/(y, + 7;) in the
saturation denominator in Eq. (23) agrees with that, #/R,, in Eq. (22).
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In addition, Eq. (23) contains two externally controllable variables, «
(amplitude of the external field) and Z, (the pump parameter), defined by

Zo =3(N, — N,) (25)

(N, = population of the upper level). A more detailed account of the time
constants together with the parameters relating to the constraint is given in
Table I.

In the presence of an external coherent field ¢, the amplitude a denotes
the total field, which is the sum of the internally generated mode b and
a,1.e.,a = b + o. The external field interacts with the atomic dipoles through
the total field but is not subject to the dissipative effect through the cavity,
which is expressed in the cavity loss term with damping constant k
(=hvQ™"). Apart from this, the deterministic part of Eq. (23) is essentially
equivalent to that of (22). The treatment of the noise part given in standard
laser theory, however, is not very satisfactory for the thermodynamic pur-
poses to which our investigation was devoted in I and which we will consider
further in the next section. Here, we consider the ““balance” of gain and loss
terms based on the macroscopic rate equation (23} without the noise part.

Let us combine Eq. (23) with its complex conjugate and write the rate
equation for the intensity of the field a*a = n (photon number in quantum
terminology) as follows:

dn An
g Iy o3 (w — — A
7 e[k + ilw —v)]ax — Cn + T+ s (26)

where C = 2k (=v/Q, where Q is the cavity quality factor®) and
A= "/'(\S(V)Zo (27)

We can interpret the right-hand side of Eq. (26) by the assignments

2 Re[k + i(w — v)] au:
rate of work exerted by external field
—Cn:
power dissipation of field energy stored in cavity
An/[1 + s(v)n]:
power emission or absorption of energy by atoms, depending on 4 > 0
ord<0

The steady state is realized, therefore, by the balance among the above
three terms, and we classify here two elementary steady states as follows.
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3.1. Case of No External Field But
Constrained by a Thermal Pump

For this case

An
=0, Cn=|—— 0 28
o n [1 +s(v)n]v=w > (28)
(Z, > O:inverted population). A nontrivial root n, of this equation is given by
A-C “/H
o= =-L(Z, — = O(N
U s(@)C 2k (Zo — Zy) = O(N) (29)
under the threshold condition
K7 (0 — w,)?
Zoy>Zy ="+ —-—
0> Zu=3% [ o (30)

This represents the lasing state (Fig. 1). We indicated in I that the balance
between power emission by atoms and power dissipation to the cavity of
the field energy expressed in (28) implies the existence of a heat flow in the
direction atoms — cavity, given by

J, = dn[1 + s()n] > 0 31)

which is extensive [i.e., proportional to the number of atoms N by virtue
of the relation (29); note that s = O(N 1), 4 = O(l), C = O(1)]. Below

power cn

An
i+s(vin
{ above threshold

An
I+s(¥)n
(Dopu lation ‘mveried)
but below threshold

0 n

Ns —
A<O {population normal) photon number

Fig. 1. Illustration of laser instability. The point of intersection n, of the two power curves on
the positive n axis represents the stable fixed point of the laser rate equation above threshold.
It is compared with a similar construction of ferromagnetism in mean-field theory, where
spontaneous magnetization is predicted to occur as the intersection of the two curves on the
magnetization axis below the Curie temperature. (Note, however, the difference between the
equilibrium and nonequilibrium natures of the two instability problems: in the laser, the straight
line and the intersecting curve have the meaning of “power,” i.e., a quantity of dissipation
dynamics.)
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threshold such a flow is still possible but is only O(1). Therefore, the
formation of the lasing state upon the passage of the pump parameter Z,
through the threshold Z, from below can be characterized by a heat flow
that constitutes the order parameter of this second-order phase transition.

3.2. Case of No Thermal Pump But
Constrained by an External Field

For this case

|Aln

Re[x + ilw — v)]aa = Cn +
(Here the frequency v is interpreted as that of the external field.) The power
dissipation of the field energy is both to the cavity and to the atoms, which is
totally compensated by the work done by the external field. In this case, a
heat flow exists in the direction: external field — cavity + atoms. Also, there
exists an electric current induced by the total field. For simplicity, we consider
the case of complete resonance, @ = @, = v, and use the scaled variables

x=s""2 y=s"2  0<x y<o (33)
[Since s = O(N 1), this scaling makes the fields represented by x and y
intensive variables.] The relation between the current j = xy and the total
field x is given by either

. 2c g2|Zo’
=1+ x, =920 34
J K< l+x2>v ¢ Ky, (34)
or
1 2¢ \L )
x:; 1+1+x2 J (34"

This is just the equation first discussed by Bonifacio and Lugiato”? to
demonstrate absorptive bistability (Fig. 2), and can be looked upon as a non-
linear irreversibility relation. The nonlinearity causes, for ¢ > 4, an interval
of y (3, <y < y,) where three allowed values of x exist corresponding to
a stable, a metastable, and an unstable point, and the transition from the
branch of lower values of x to that of higher values of x can be under-
stood as arising by a saturation of the absorption of the external field when
it increases. The treatment of the deterministic equation alone predicts only
the existence of such branches but is not able to predict the precise point
of the first-order transition where the discontinuity of x takes place.
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X x=y

x=x{y)
2
(Y:H' 1+C:2)
6822

upper branch

total field

unsfable branch

ilower branch

Ym Y
——

external field

Fig. 2. Illustration of bistable absorption (after Bonifacio and Lugjato'®). The situation is
compared with the hysteresis curve of ferromagnetism, where the abscissa and the ordinate
correspond to the external static magnetic field and the magnetization, respectively. Here again,
the dissipation dynamic nature of the bistability should be noted.

4. EFFECTS OF NOISE. STEADY-STATE DISTRIBUTIONS

The determination of the probability distribution which describes the
stochastic process a(f) subject to the Langevin equation (23) requires the
precise form and Gaussian characteristic of the noise part. We specify it in
terms of three elementary white noises f, F, and F, which arise in the starting
set of equations (set up in the Appendix):

da . %MS d(v) Z,
——-——[K+z(w~v)](a—a)+m

dt
L 35(v)
*(” . TJ?‘)—F+ITTT“F) (39)

where

SO0 = 2uen, o(n), n, = (b*b,, = O(1)
(FXO)F()> =2y, M 6(1), M = (R*R)., = O(N) (36)
(FAOF(0)) =y, M 8(1)

and vanishing correlations for all the other combinations.

Equation (35) has been derived by applying the adiabatic reduction of
rapidly relaxing variables associated with the atomic degrees of freedom, with
a formal inclusion of the noise part in the starting Langevin equations.
Its validity is assured at least without the noise part, as discussed in the
Appendix, provided the condition , [v — w| <y, 7 is satisfied. As to the
noise part, on the other hand, the adiabatically reduced form of the white
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noise in (35) contains a nonconstant factor (and nonlinearity) in the
coefficients, which causes a confusion in deducing the correct form of the
Fokker—Planck equation for the reduced process a(r). This is due to a
singular property of the white noise, which contains “spurious drift.”*?
A possible prescription to obtain the correct form will be found by taking
as an example the Ornstein—Uhlenbeck process considered in Section 2.

The Ornstein—Uhlenbeck (OU) theory is a fully dynamical treatment of
the Einstein theory of Brownian motion such that the solution of (1) and
(2) reduces to a spatial diffusion process x(r) asymptotically for 1 — oo
(more specifically for 7> 1/y),%® which can be realized by the adiabatic
reduction method, i.e., just by setting du/dt = 0 in (2) and by inserting the
form of u thus obtained into the right-hand side of (1). If the decay factor
y is a constant, this procedure yields

d 1 0 1
x_ L9 i fo= 0 (37)

E_—my Ox

and the use of (3) and (4) establishes the spatial diffusion process, for which
the Fokker—Planck equation is written as

op kT 0 [1 0¢ op
ot my bx <kT ox ¥ * 0x ) 38)

[The potential ¢(x) is assumed to satisfy the binding condition (7).] Suppose,
however, that y (>0) is spatially nonuniform. The procedure then must be
reexamined to decide the correct role of y(x) with regard to the second-order
differential operation in the Fokker—Planck equation.

To find the answer, we first rewrite the Langevin equations (1) and (2) in
the form of the stochastic differential equation

dx = u dt (39)

du = *:—y(x)u 1 %] dt + p(x)'? dw (40)
m Ox

where the Brownian motion (Wiener process) w(z) satisfies -
{dw(t) dw(t)) = (2kT/m) dt (41)

which conforms to (3) and (4). The prescription to carry out the adiabatic
reduction of the velocity process u(r) is now summarized as follows:

(I) The stochastic differential (SD) y'/? dw in (40) should be considered
in the It6 sense in order for the averaged motion to be consistent with

o ==y - -2

dt m \0x
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(IT) Carry out the elimination of the process u{t) by setting du = 0 and
by inserting u dt thus obtained into the right-hand side of (39), where the
relation between the 1t6 and Stratonovich senses of the SD, viz.

YdX =YodX —+dYdx

(Yo dX is the Stratonovich sense), is utilized and products of more than
three SDs can be discarded.

(I1T) All the calculus in the above, algebraic and differential, can be
performed just as the usual calculus in terms of the Stratonovich sense of
the SD; in particular, for any differentiable functions f(x), g(x),... of the
process x(f)

. of dg (of ag of
d ) = — 0 d R — o0 | — ¢ = ——}=
y) ax ox (Gx dx Ox 0x a
A differential form of time f(¢) dt is considered in the Stratonovich sense.
(IV) Calculate the resulting drift velocity and the diffusion coefficient

according to either the It6 or the Stratonovich formula by using (41) to get
the Fokker—Planck equation“®

2

dp 0 1o
- = (~b - 2
dx = b(x) dt + g(x) dB 3 = (—bp) + 35 (g°p) (D

_ o o . 16/( 9
-—b(x)dt—l—g(x)vdBH—a?—a(—bp)+§£(ga—;gp> (S)

if B(t) is normalized such that {dB dB) = dr.
If these steps are followed in the OU process with nonuniform y, one
finds the Fokker—Planck equation for the reduced x(r) process:

p 0| kT 1 d¢ ap
o ox l:my(x) (kT Ox P+ ox (42)

In particular, we have the steady-state solution

e~ PxNkT

Palx) =
l Z(¢)
irrespective of the nonuniformness of 7.

Proof.“* In (38),

| 1 oyt
Ve =y e dw — ’

dx dw
X

where the difference between (8y'/?/dx) - dx and (8y!/?/8x) dx is neglected
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. because it is O(dx dx dw) in the above expression. Then, setting du = 0 yields

wdt = “li‘édurlo(ywcdw— A dxdw)
my Ox Y Cx
= ;;%%dt—l—y_”zodw—%agzz dx dw
:;—;g—fdt—i-y‘”z dw + (% 62_):/2 —%62:2>dx aw
= ;;%dﬂrw/”/zdw——zy%%(;gldxd’

which is set equal to dx in (39) in accordance with the prescription. This
means that the process x(¢) is influenced by the white noise w(f), so that
dx dw = O(dt), which is nonvanishing. This term can be calculated by insert-
ing y~ Y2 dw into dx, since dx =y~ 12 dw + O(dt). Thus, on replacing (dw)*
by (2kT/m) dt [which conforms to (41)],
dx:i(‘i-‘p+kTé1§gi>dz+y‘1/2 dw (43)
my \ Ox éx
The resulting Fokker-Planck equation by means of the It6 formula is iden-
tified with (42). QED.

A full mathematical justification of the above rule for the adiabatic
reduction is not yet available, but at present we consider the prescription
as a plausible way to obtain the steady-state distribution in terms of the
reduced process. Accordingly, the multiplication of the white noise by the
saturation factor [1 + s(v)a*a] ! in the reduced process (35) is interpreted
in the Stratonovich sense, as well as in

dn . An P
2;:2Re[ic+l(w——v)]aoc——Cn+l—m’;+f(t) (44)
where
i o —lg d) * s(v)n
f(t)-(af+ . T st +s(v)na F+c.c.>—f—~———»1 s L (45)

Then, the “*spurious drift” that arises when rewriting (45) in the It6 equation
(such that <{noise> = 0) is shown to give a noise correction of (26) as follows:

%:2Re[;c + i{lw —v)]ax — C(n — n,)

* 1+ s(v)n (n = ny)

s(v)n

- éVHS(V)M[T_}_—S(*v‘)n—]Z—

(46)
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with n, = M/(—2Z,) = O(1). Also, the correlation properties (36) yield

FHONF (D — ldng
(FXO)F (1)) = 2<Cnt + LT s(v)n)n 17(3)] 47)

The Lasing State. In the absence of an external field, i.e., « = 0, the
phase diffusion can be separated, and

op/ét=L.p+ L,p (48)
where
0 1 0
Lp=+|Conl—p+ 2 (49)
on n, on
0 |An |n 1 ap
Lp=——"2—(— £ 35
P 6n|:1 + s(w)n <nAp+8n (50)

Both (49) and (50) are of the form (42), allowing the steady-state distribu-
tions L,p =0 and L,p = 0 given by the canonical ones e ™" and ¢ "4,
respectively; for this reason the system can be adapted to the Lebowitz
model of a two-reservoir open system. Above threshold for which n, < 0,
the steady-state solution (L, + L ,)p = 0 for the lasing state is approximated
by*

pa(n) = const x exp[ *ﬂ%ﬁ—?’al—) (n— n5)2:| (1)
We emphasize that this distribution, characteristic of the ““far from equilib-
rium” situation, is a *‘synthesis” of the two canonical distributions e ™"/
and e ™" (see Fig. 3).

The Bistable Steady State of Absorption.®? It is difficult to
obtain the exact steady-state solution when « # 0. However, for the resonance
v = o = w,, the reduced rate equation (23) has a fixed phase point ¢ = 0,
and the Fokker-Planck equation can be approximately given by

dp/ot = L,p + Lyp (52)
where
é
Lep=—5-(cyp) L, y defined in (33)] (33)
[P v - S A (54)
dp—_g_; X Sl’lcp Xp 5X_J ~
with
KSh, 2c
D(x) = > (1 o x2> (55)

# This is an improved form over the one discussed in 1.
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0 Ny —s

Fig. 3. A decomposition of the lasing distribution into two elementary distributions of canonical
type. One component Is actually ficritious because of its negative temperature; i.e., an
unnormalizable distribution. This is of no harm for the existence of the lasing distribution,
because only its logarithmic derivative is concerned.

.

Let us denote the steady-state solution (L, + L,)p = 0 by p,(x), which is
expressed in terms of the potential @ (x) as®

p,(x) = const-x expli—lfqz— CDy(x)] = const-x exp[jx ;;g; dx’:l (56)

where

. 2¢x .
v,(x) =/ — K<x + T x2>’ J =Ky (57)

An elementary integration gives explicitly

2cy X

e+ 7 Gy CY

1
(Dy(x) = ‘2? (x — }’)2 +

For vanishing external field, y = 0, the solution reduces to the canonical form
P.(n) = const-e~"", which represents blackbody radiation. The minima of
the potential @ (x) satisfy (6/0x)®,(x) = 0, which is identified with the non-
linear irreversibility relation (34). In the interval (y,,, y,,) it exhibits a clear
double minimum and an unstable point (Fig. 4). Recently, there has been

® The same result has been obtained by Gragg er al.** from the population-dynamic master
equation associated with (26).
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IR 2 2¢ - X%
§Y\X)'2(x_y) +-2‘1/%‘10n W,C—Z/O }
l J
(1) y=13.0 I
{21 y=133 /’
| [3) y=136 |
(\)/
(2)
(3)
! i M
o] 10

Fig. 4. Double minimum of the potential function ®(x) defined in Eq. (58), which exhibits
the bistable absorption.

considerable interest in the problem of multiple stability,"3:**3% of which
the explicit solution (58) offers a concrete example.

5. EFFECTS OF NOISE. ll. EFFECTIVE TEMPERATURES

In their discussion of the laser linewidth in terms of the phase diffusion
of the oscillating mode, Sargent et al.*® introduced an effective negative
temperature, to be interpreted as giving a negative value of the average
photon number through the Planck formula #,, = [exp(hwo/kT,,) — 11712
This is precisely what we obtained in the preceding section as the noise correc-
tion of the photon number rate equation; viz. n, given by (46). Therefore,
we consider this concept as bearing further thermodynamic significance.
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Let us rewrite the corrected equation (46), omitting the last term® of
O(sn):

d
o 2 Re[x + il — v)]ax — C(n — n.) +

7 n—mn,) (59)

1 + s(v)n (

This expression exhibits clearly the role of the noise corrections; each is a
limit of the photon number » in contact with the respective reservoir, i.e., n,
with the cavity and n, with the atoms. In such a consideration, the atomic
degrees of freedom whose dynamical variables are represented by R and Z
(the complex dipole and the population difference, see the Appendix) are
incorporated into one of the reservoirs in contact with the oscillating mode of
the field (the physical picture behind the adiabatic reduction of these
variables), which provides another conceptual basis of the Lebowitz model.
This then enables us to introduce a detailed balance condition: n. = n, in
the absence of external constraints, i.e., » = 0 and Z, = [equilibrium value],
which yields the termwise satisfaction of the steadiness condition, dn/dt = 0.
The two Einstein relations for n, and M in (36) tell us that

n. = <b*b>eq (>0)’ A4 <R*R>eq (%O) (60)

"N, - N,

and the Planck formula for n, is compatible with the detailed balance
condition upon choosing (R*R>., = N,, which is satisfied by the sum of
N independent Pauli spins. However, the expressions (60) are also compatible
with detailed balance when the operator symmetrized form is assumed for
b*b and R*R, for which

n, = coth(hw/2kT,),  n, =4 coth(hiwy/2kT,) (61)

Here, the temperature 7, (identical with T, in the literature®-3?) is defined
by N, = [exp(—hwy/kT,)]N, in accord with the usual concept. Our discus-
sion in subsequent sections will show how the expressions (61) play a
thermodynamic role in the laser system.

© The omitted term 4y s(v)M[1 + s(v)a] ~2[s(v)n] is O(N ~*) for the range n = O(1) (i.e., of the
order of the thermal fluctuations), which ensures that the noise correction deduced is the
unique answer in the same range [provided the Stratonovich sense of the SD is the correct
interpretation for the noise part in (45)]. When # = O(N) (i.e., above threshold), the omitted
term becomes of the same order as the n,, n, terms. But in such a situation, all the noise
corrections become O(N ') of the main term and thus are insignificant. The same remark
holds for writing the Fokker—Planck equations (48) and (52), where drift terms smaller than
O(N ') of the main drift are discarded.
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6. ENTROPY PRODUCTION AND THE
MINIMUM PRINCIPLE

Lebowitz’ formulation of the entropy production for a dissipative dy-
namical system‘'®:2%:23) is based on the following two assumptions:

(a) If the system is in contact with a single, inexhaustible thermal
reservoir characterized by a temperature T = 1/kff and its approach to the
equilibrium state is governed by a Markovian evolution law of the form
(d/dt)p = Lp, then the entropy production associated with the distribution p
is given by

d
o(p) = 7 Tr p(—log p +1logp,) = Tr(Lp)( —logp +log p,)  (62)

[Tr p(d/dt) log p = Tr Lp = 0], where the canonical equilibrium distribution
pe = (1/Z,)e ™" satisfies

Lp, =0 (63)

(We have used the quantum terminology of trace, which will allow an
appropriate classical interpretation.)

(b) Suppose that the system is in contact with more than two reservoirs,
each of the above nature; the ith reservoir is characterized by T; = 1/kf, and
its contact with the system is described by the operator L;,

Lip,, =0,  p,=(1/Zy)e P (64)
and further suppose that the time evolution of the system is governed by
dp/dt = L'™p + % Lip (65)

where L' is a purely mechanical Liouville operator with a Hamiltonian
['which may be different from the H in (64)]. Then, the entropy production
associated with any distribution p satisfying the evolution equation (65) is
given by

a(p) =) oip),  odp) =Tr(Lp)—logp +logp,) (66)

One can take into account the effect of thermal constraints by the unequal
temperatures and the effect of mechanical constraints by the external field
expressed in LY,

A prototype of the entropy production associated with a system subject
to the Fokker—Planck equation (42) is easily deduced: Let the equation be
rewritten in the form

0 d 0 1
T=lp=o [D(x)p(ﬁx log Ifi)] O N ()
B

e
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Then
* {é 0
Tr(Lp¥—log p + logp,) = —J {a [D(x)p E™ log 1—?}} log 5 dx
© a 2
- J D(x)<$ log f) pdx>0 (68)

by the use of integration by parts and the boundary condition p = 0 at
infinity. From (62), therefore, the expression (68) gives the rate of increase
of the relative entropy | p(—log p + log p,) dx, showing that the approach of
the system to equilibrium is subject to the second law of thermodynamics:
The second representation in (62) allows us to interpret this rate as consisting
of two parts: the rate of information entropy S = jp(—logp) dx and a
second part, due to the canonical form log p, = — H, a heat flow divided by
kT, so that
jal 2

o(p) = J D(x)<§; log 1%) pdx = fg ~ EI? J (Lp)H) dx  (69)
The coefficient of (k7)™ ! in the last term must be interpreted as a heat
gained by the system (flowing from the infinitely large heat reservoir), in view
of the transformation from the Schrodinger to the Heisenberg picture:

j(Lp)H(X) dx = JP(X)(L*H)(X) dx = (L*H) (70)

which implies the average of the rate of the system Hamiltonian over the
distribution p.

Let us now obtain the entropy production o(p) for the many-reservoir
open system under external fields governed by an evolution law of the type
(65). Specifically, we consider the system governed by

1% =2 [oopl,  Lp= o [D“(x)g 2 log ﬂ 1)
where
Pe(X) = (1/Zy )e™ P (72)
and the “purely mechanical” nature of the operator L* is expressed as
div v(x) = 0 — v(x) = const (one-dimensional case) (73)
According to the Lebowitz formulation,

, 0 p 2
o(p) =Y o(p) =% j Dwx)(E log ;) » dx

_dS _y
T dr Sk,

(LFHY 20 (74)
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where

ds
S= Jp(*log pydx, o= J((LP)(—log p)dx (75)

L is given by the total evolution operator,
L=L"+Y L, (76)

Note that the condition (73) ensures
J(L(H)p) logpdx =0 (77)
In the steady state p, for which Lp, = 0 formula (74) yields
J;
o) =m0 20 = D, 78)

The entropy production 6(p,) does not vanish in general unless the external
constraints disappear, i.e., T, = T, = - - - and LY = 0. For example, when
the formula is applied to the Kramers equation discussed in Section 2, the
result agrees with (14) for N charged particles in a uniform electric field and
with (21) for the same system but in contact with two reservoirs of tem-
peratures 7, and 7,.

In I, we have shown that there exists a variational principle which
determines the steady-state solution p,, Lp, =0, in the absence of an
external field (i.e., L = 0). It involves minimizing a functional of two
independent distributions p and p, o(p, p), with respect to one of them p,
requiring that the minimum be satisfied by the special condition p = p, for
which the minimal value of ¢ is identical with the entropy production a(p).
This is a kind of self-consistency condition on the unknown distribution p
that is shown to be equivalent to the steadiness condition Lp = 0. It can be
extended to include the presence of an external field as follows.

Consider the functional defined by

d . 0 AN
5.p) = —2 | o| —log plpdx + Y | D) —log
o(p, p) 2 jb(é’x log p)p dx i J (’c)<ax log pg() pdx (79)

It is lower bounded [i.e., 6(p, p) = 6, > — 00, with 6, a constant], and takes
the minimal value, when varied with respect to p, for each fixed p. Then
the following two conditions are equivalent®#):

) Puinlp) =p,  where o[ pun(p), p] = min a(p, p) (80)

. 0 G, . 0
(i) Lp = ~ 5 (vp) + ;a [D‘”(x)(a log l%)} =0 (81)
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The proof is a straightforward extension of I, by noting that the additional
term in the variation function (79) due to the external field depends on
log p linearly, whereas the remainder has a quadratic dependence.

Here, we demonstrate how this variational principle can be used to
obtain the steady-state distribution in practice. A simple example can be seen
in free Brownian particles in contact with two reservoirs as discussed in
Section 2:

a(p,p) = Nk E1 +y2kT2 ilogi ) pdu (82)
sl m \Ou " p, m \ou  p.,

pelt) = const-exp[ — Bm®/2)],  fi=1/kT,, i=1,2

with

Let us choose the following form of the trial distributions p and p:
pu) = (2n/mp)'/? exp[ — f(mu*/2)]
Pu) = Q2r/mP)? expl ~ plmu’/2)]

where § is an unknown parameter, and f, also unknown, is the variation
parameters. A direct integration of the right-hand side of (§2) yields an ex-
pression to be minimized with respect to f:

(83)

a(p,p) = I: B—py+22 B8 J (84)
B LB B2 :
and set § = f for self-consistency. This provides the expected result:
1 1T+ 9T, Y172 N
T|=—=)="——""" 0(pun) = (T, - T,
( kﬁ) Y1t 72 it LT, 7 '

in agreement with (19) and (21), respectively.

It can be observed in the above demonstration why the condition of
self-consistency is necessary to get the exact distribution by the variational
principle: one might be tempted to set up the variational principle directly
by minimizing the functional a(p) with respect to the normalized distribution
p to get the result, as motivated by the thermodynamic principle of
“minimal entropy production.” If this is applied to the above simple
example, (84) is then replaced by

O'(P)“‘ﬁ‘[ﬁl(ﬁ B1) +ﬂ2(ﬁ ﬁz}

to be minimized with respect to . This does not give the right result, due to the
extra factor of variation ! in front of the bracket. Clearly, this factor
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arises from the distribution p over which the remaining quadratic quantities
are averaged to evaluate o(p).

Therefore, the self-consistency condition tells us the two different roles.of
the distribution p in the functional by denoting them as p and p; viz. the
varying distribution p and the averaging distribution p, the latter not being
subject to the variation: p is considered as the distribution containing the
effect of fluctuations acting on p, and the variation is to be made against
such fluctuations (the spirit of “local potential”3%:3")),

This variational principle can be used for more complex nonlinear
problems in accordance with (80) and (81). In a separate paper we show that
the laser distribution (51) is indeed a consequence of it (by a trial distribution
of the form p(n) oc exp[ — B(n — n,)*] with two variation parameters f# and
ng: the distribution is synthesized as the optimum of two elementary
distributions of thermal equilibrium type, and the present variational
principle shows just how to optimize them.

" 7. THERMODYNAMIC RELATIONS

Suppose that a dissipative dynamical system is subject to an evolution
equation of the standard form (65), expressed in terms of Fokker—Planck
operators on its probability distribution p, i.e.,

op 0
= LUp [ [y — ,
p + Z iDs p= ax, (vup)

ot
[Dﬁz(x)p 2 (1og +%ﬂ (85)

(divo = dv,/0x, = 0), and
(the usual summation convention for repeated indices is implied). Then, the
first and second laws of thermodynamics,

Lip=—
P =5

"

dE = oW + Z 0Q; (plus sign for a gain of the system)

Z — Ql (entropy in dimensionless units)

can be identified in the statistical mechanical model (85) with the following
expressions: use the notation for an average (X) = [X(x)p dx, and E =
(H) and § = {(—log p)) for the internal energy and the entropy, respec-
tively. In a time interval d¢ (on a macroscopic scale)

dE = dt (L*H(x)) (86)
dS = dt {(— L* log p)> (87)
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where the total differential 4 is assigned only to the total evolution operator
L* = LY* 4 ¥, L* given by

oX
[Exy = 88
"y, (88)
4] L 0X DY 6H 0X
L*X - D(l). il wy V5 A 89
! 0 u( " 6xv> kT; dx, Ox, (89)
For the other component differentials the notation 4 is used and

oH

SW = di (LLY*H y = dt <“u “> (90)
0x,

0 L OH DY 0H 0H
50. =dt (L¥XH> = dt puw _ Py YA VAE 91
2 CLEHD <6xﬂ < " axv> kT; 0x, 5xv> O

We now discuss the application of this to our optical system.

7.1. The Lasing State

The state of affairs where a self-oscillation is taking place but the power
it generates is still confined inside the cavity (of Fabry-Perot type) can be
represented by the evolution equation (48) with the Liouvillian L =
L, + L, given by (49) and (50), i.e., oW = 0. At the steady state dE =
dS = 0, so that the two thermodynamic relations become

1 1
2= — , 00, =—0
0 (kTA ch> 004 0. oy (92)
where
. h hw _ hw heow
T =-—coth kT, =2 coth ——— 3
ki = cothy g Ka=—ycothy ©3)

in accordance with (61). Thus, positive T, and negative T, above threshold
indicates merely 6Q , > 0 (heat flows from the atoms). However, this is just
a realization of the ideal heat engine: it takes heat from a reservoir of
higher temperature and supplies heat to another reservoir of lower tempera-
ture, and the negativeness of the higher temperature admits the possibility
that the efficiency of the engine can be 1009, without violating the second
law, provided the original formulation is properly revised (a new type of
“perpetual motion”*®)). This can be seen by introducing the work —dW
in the energy conservation relation, i.e., 6Q, = —0Q, + 6 W, in place of (92)
and substituting it into the inequality of the second law, obtaining that

n=WeQ, <1 -T,/)T,<1 for T,>0 (94)
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but the negativeness of T, makes it possible that the maximum value of g
can exceed unity. It actually takes a value > 1 provided 6Q, > 0 (correspond-
ing to the situation that the engine takes heat from both reservoirs,
possibly cooling the lower temperature reservoir). Even if Q. is restricted to
negative values, # can be made arbitrarily near to unity by reducing the
dissipative loss Q..

A simple expression of the efficiency of the laser in the present model
can be obtained under the assumption that the energy flow from inside to
outside of the cavity is expressed by an additional drift velocity — Bn in
the Fokker—Planck equation (48), where B is a positive constant deter-
mined by the structure of the cavity (it plays the role of a sink with respect
to the power generated inside the cavity without dissipation). This yields
n = B/(B + C), which agrees with what is known from laser technology.#:3%
A precise determination of the efficiency requires the conversion ratio of the
work versus the power so emitted, which can be unity only for ideally
coherent laser light."”

7.2. Bistable Steady State of Absorption’

The system can be modeled by an assembly of gas atoms inside a ring
cavity irradiated by coherent laser light, which is reemitted,*") sometimes
called resonant fluorescence, accompanied by absorption; this is a typical
nonlinear response phenomenon. Let it be described by the simplified
Fokker—Planck equation (52) with (53)—(55). The dissipative part L, in (54)
corresponds to L, + L, in the laser, but here represents a system in contact
with a single reservoir due to the condition of detailed balance 7, =T..
The thermodynamic relation for the steady state is accordingly given by

0> —W/T,, OW=—(50,+30,) (95)

indicating that 6 W > 0.

The quantity 7, ' 6W in the above relation represents the entropy
production at the steady state (for a time interval dr), which can be cal-
culated either by formula (90) or by a formula of the form of (69), i.c.,

o(ps) = f ’ D(x)(ﬁi log ’i) P dx (96)
0] ox Pe
with p.(x) = p,(x) given by (56)—«(58) and p,(x) = p,—o(x). The result is as
follows:
a(py) = {J*/D(x)) = (2/sn.)j{x) 7

7 Recently, a new problem of “chaotic” steady states has arisen with regard to dispersive
effects. )
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where x and y = k™! are the amplitude of the total field and the external
field, respectively, scaled as in (33), and D(x) is the nonconstant diffusion

coefficient of the Fokker-Planck equation (52), given by

D(x) = e (1 L% ) (98)

2 1+ x?

Clearly, the first term in the parentheses 1 corresponds to absorption of the
total field by the cavity wall and the second 2¢(1 + x?) ™! to absorption by the
atoms, whose relative importance determines the bistable points; its non-
constancy is therefore linked intimately with the potential @, (58), in the
steady-state distribution: The problem of relative stability, i.e., the deter-
mination of the allowed value x of the multiple roots of the nonlinear
relation (34) for a given y, can be solved by finding the absolute minimum
of the potential @ (x), as noted by several authors,®'=3? and therefore the
phase transition at which the discontinuity of x occurs is identified with y,;
the coincidence point of the double minimum of the potential @, is such that

x3 2cx dx
= 4 9
J (x 1 4+ x? y0> D(x) 0. € ©9)

X1

which is equivalent to the Maxwell construction of the transition point (see
Fig. 5). Hence, the averaged quantity {x) is a single-valued function of y
analytic except in the vicinity of y,, where a discontinuity takes place, the
discontinuity being rigorous in the thermodynamic limit, N, = s~ — o0,

This discontinuity is precisely what arises in the second representation
of the entropy production given by (97), proportional to j(x): It justifies
the conventional writing of the entropy production as [flux] times [force]
in the sense of an ensemble average over the steady-state distribution far from
equilibrium, where the average of the [force] is a nonlinear (discontinuous)
function of the [flux]. Indeed, this nonlinear flux—force relation is given by
the following identity due to the two representations in {97):

1 2¢ TN L
o= (1+725) > (100)

[cf. (34)], yielding the rigorous meaning of the Onsager coefficient in this
nonlinear irreversibility. We remark that the entropy production so estab-
lished has no meaning with regard to the indication of the relative stability:
At the transition point y,, the lower value of {x) is more stable for y < y,,
but the higher value of (x> is more stable for y > y,. Instead, the
averaged quantity <{x) in the entropy production plays the role of order
parameter in such a dissipative phase transition, indicating the existence of
an ordered phase in the lower branch where the entropy production is
anomalously small.
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15 20 y

Fig. 5. Ensemble average (x> over the steady-state distribution (56) with (58), vs. y. The
point of discontinuity y, can be determined by the “equal area” rule in the scaled coordinate
E=[2{1 +2¢/[1 + (x)*]} ! dx’ (the two hatched regions are equal in area).

8. DISCUSSION

A basic issue that cannot be overlooked for the present approach is Van
Kampen’s criticism of the use of the nonlinear Langevin equations. Actually,
his criticism extends to the possibility of describing physical processes of a
stochastic nature by means of the Kolmogorov equations (which by itself is
mathematically acceptable, see Ref. 35, discussion part), and so we divide the
criticism into two claims. The first is the claim™” that real errors can arise
if a Langevin equation with a nonlinear deterministic part is constructed
just by supplementing it by a Gaussian white noise term with a constant
strength. Our treatment of the laser Langevin equation (35) is free from
this danger, in view of its derivation from the starting simultaneous
Langevin equations on the basis of the stochastic calculus. We point out
that it is necessary to establish a mathematical foundation of the method
of adiabatic reduction including noise terms: Otherwise, the prescription dis-
cussed in Section 4 cannot be put on an entirely solid basis. We also note
that the starting set of the Langevin equations itself should be subject to
this warning, but we have a sound basis in the Brownian motions of photons
and spins discussed in 1.
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The second claim is the assertion that, from the standpoint of the so-
called Q-expansion of the master equation, general diffusion processes with
nonlinear drift velocities and nonconstant diffusion coefficients as functions
of the state variables are possible only under the special circumstance that
the first term of the Q-expansion vanishes identically : otherwise, a consistent
description in terms of second-order differential operators should be re-
stricted only to those with linear drift velocities and constant diffusion
coefficients (though they may be complex functions of time), and if one
wishes to go beyond this stage of approximation it is necessary to take into
account higher order derivatives for the consistency of the expansion
scheme."'® This is a rather strict statement, which our laser Langevin
equation and hence the corresponding diffusion (Fokker-Planck) equation
really do not fit. [Note that in our laser system the expansion parameter Q is
given by N, 1.e., the total number of atoms, and by this interpretation the laser
Langevin equation (35) is classified into the third case*® of Van Kampen,
where he rejects going beyond the linear fluctuation in the vicinity of the
stationary point within the “diffusion approximation”.]

We have no further comment on Van Kampen’s criticism, but maintain
the plausibility of our standpoint. We note in this respect that there exists
another scheme of expanding and truncating the quantum master equation
for a laser which reduces to the laser Fokker—Planck equation (48) and
which also takes into account the essential quantum fluctuation effect repre-
sented in formula (61) (see the Appendix of I).

APPENDIX. LASER RATE EQUATION FOR
TWO-LEVEL ATOMS

Let us denote the five random variables of our optical system, as in I,
as follows: b, b* are the complex amplitudes of the mode of the em field,
which may grow; R, R* are the complex amplitudes of the atomic dipole
collective mode; Z is the total atomic population difference = $(N, — N,),
where a denotes the upper and b the lower level, respectively.

Further, we assume that the system is irradiated by a coherent external
field «,, which is added to the mode amplitude b. Then, it is plausible to
describe the purely mechanical motion of the system by means of a
Hamiltonian given in the rotating field approximation by

H = hob*b + hwoZ + hg[(b* + o*)R + (b + x)R*] (Al)
where the frequency o is associated with the mode, w, with the dipole,

and g with the interaction between the dipole and the total field. (In I,

we used the notation A/\/N for g to indicate that this coupling constant is
O(N ~'/%), where N is the total number of atoms in the cavity.) The equations
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of motion for these variables can be obtained by using the commutation
relations [b, b*} =1, [Z, R¥] = R*, and [Z, R] =—R in the quantum
mechanical analog of a harmonic oscillator and an angular momentum
vector, respectively, of the system under consideration in a classical
mechanical framework :

b = —iwb — igR, R = —iwyR + 2igZ(b + =)

; (A2)
Z = ig[(b* + 0, ")R — (b + o,)R*]

The effect of the thermal environment on the system can be taken into
account by supplementing each equation by a systematic damping term and
a residual noise term, i.e., by making it a Langevin equation. The most
convenient way to do this without losing internal consistency is to adopt the
model of linear Brownian motion for each dynamical species, taking (b, b¥)
and (R, R*, Z) in the absence of coupling, yielding the picture of Brownian
motion of photons and that of spins, respectively, as discussed in 1. This is
still valid in the presence of the external field ¢,, where it is assumed
simply not to be subject to the damping and noise. Then, it can be shown
that a consistent choice of the field variable is not b but the total field
a defined by

a=b+ o (A3)
The set of Langevin equations is written, accordingly, as follows:
d=—(k+io)a—o)+d —igR+f  d*=cc
R=—(y, +iwg)R +29Za+F, R*=cec. (Ad)
Z= —y(Z ~ Zy) + ig(a*R — aR*) + F,

where the usual white noise character and the Einstein relation will be
assumed for the noise part. [The reason for the choice of a for the field
variable rather than b is that by this choice the role of external field is
expressed as a sourceless drift velocity—its divergence vanishing—in the
Fokker-Planck framework associated with (A4) as well as with its adiabatic
reduction, as discussed in Section 6.]

It is convenient to reexpress Eq. (A4) in the rotating frame with
(arbitrary) frequency v, i.e., in terms of the transformed variables a = ae™
and R = Re™:

fi

a=—[k+ o —-vla—a)+ v+ &/o)% — igR+f
R=—[y, +ilw, — IR+ i2gZa+F, cc. (A4)
Z=—y(Z—Z) + ig(@R — aR*) + F,

fi
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where the frequency v is determined best for the steady situation. Sup-
pose that the external field is harmonic with a single frequency o,
[o, = aexp(—iw; )] and the field is induced by this external field. Then,
in the steady state, v = o, should be the appropriate choice for which the
term (/v + d,/o,)o, vanishes and the resulting deterministic part of (A4')
becomes autonomous. However, if the system becomes self-oscillating
(lasing), a proper frequency of the oscillation 1s determined, which is given
in the present model by

v = (Kkwy + y,0)/(k + 7,) (AS)

This frequency makes the imaginary part of the secular determinant for a
and R on the right-hand side of 4 and R in (A4’) vanish. Under this lasing
circumstance, the real part of the determinant also vanishes, the threshold
value of Z being attained, so that a linear relation is formed between g and R.
This is given either by

= (U +x/y)2gZ

R = A6
K+7v, —ilo—ow,) (A6)
or
—(1 ; _
d — . ( + ?}L/K)lg R (A6/)
K+7y, —i(o—w)
where

2
Ky, W — Wy
=t
Zo= |1+ (252 ) A7)

We now present an argument to justify the “adiabatic elimination.”

Suppose the situation k « y,. Then, v ~ w by virtue of (AS) and, at
the same time, wy, — v =~ —(w — w,), so that the relation (A6) just arises from
R = 0in (A4’), where the noise part is disregarded. [Similarly, in the opposite
case, K>y, v~ wm, and w — v ~ ® — w,, for which the relation (A6’) is
the consequence of @ = 0. We do not go into this situation.] This suggests
that we choose the frequency v of the rotating frame equal to , the
frequency of the mode, and eliminate R by substituting expression (A6)
(k « y,) into the other two equations. For the Z part, this gives

Z=—y(Z — Z,) — v s(w)Zn (A8)

and the threshold condition that is obtained in combination with the other
equation # is consistent with (A7). Therefore near the steady state, it further
suggests that we eliminate Z to get a single equation for 4 from

Z =0, Z = Zy/[1 + s(w)n] (A9)
where
s(w) = (492/7’\;7’&/{%2/[%2 + (0 — o)1} (A10)
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Actually, the procedure of adiabatic elimination is expected to have a
wider applicability than the above discussion, provided that the inequalities
on the basis of which Eq. (23) is derived, «, |v — w| < y,, y, are satisfied.
Also, Eq. (35) is the formal application of the same procedure to include
the noise part in (A4').

NOTE ADDED IN PROOF

After submitting this paper, we have carried out a detailed analysis of
the adiabatic reduction of fast variables from a set of Langevin equations,
obtaining a result that indicates the full validity of the reduced Fokker—
Planck operators given by (50) and (54), but also the necessity of a certain
modification of the prescriptions (I}-(1V) in Section 4. This means that the
form (46), derived when (I)-(IV) are literally applied to the starting laser
Langevin equation (A4), is incorrect. Accordingly, footnote 6 becomes a
superfluous statement. This matter will be reported separately [see also
Ref. (42) and (44)].
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